首页> 外文期刊>ACM transactions on knowledge discovery from data >Semi-supervised Learning Meets Factorization: Learning to Recommend with Chain Graph Model
【24h】

Semi-supervised Learning Meets Factorization: Learning to Recommend with Chain Graph Model

机译:半监督学习遇到因式分解:学习推荐的链图模型

获取原文
获取原文并翻译 | 示例

摘要

Recently, latent factor model (LFM) has been drawing much attention in recommender systems due to its good performance and scalability. However, existing LFMs predict missing values in a user-item rating matrix only based on the known ones, and thus the sparsity of the rating matrix always limits their performance. Meanwhile, semi-supervised learning (SSL) provides an effective way to alleviate the label (i.e., rating) sparsity problem by performing label propagation, which is mainly based on the smoothness insight on affinity graphs. However, graph-based SSL suffers serious scalability and graph unreliable problems when directly being applied to do recommendation. In this article, we propose a novel probabilistic chain graph model (CGM) to marry SSL with LFM. The proposed CGM is a combination of Bayesian network and Markov random field. The Bayesian network is used to model the rating generation and regression procedures, and the Markov random field is used to model the confidence-aware smoothness constraint between the generated ratings. Experimental results show that our proposed CGM significantly outperforms the state-of-the-art approaches in terms of four evaluation metrics, and with a larger performance margin when data sparsity increases.
机译:最近,潜在因子模型(LFM)由于其良好的性能和可伸缩性而在推荐系统中引起了广泛关注。但是,现有的LFM仅基于已知项来预测用户项评级矩阵中的缺失值,因此,评级矩阵的稀疏性始终限制了其性能。同时,半监督学习(SSL)提供了一种通过执行标签传播来缓解标签稀疏性问题的有效方法,该方法主要基于亲和图的平滑性。但是,基于图的SSL直接应用于推荐时会遭受严重的可伸缩性和图不可靠的问题。在本文中,我们提出了一种新颖的概率链图模型(CGM)以将SSL与LFM结合使用。提出的CGM是贝叶斯网络和马尔可夫随机场的组合。贝叶斯网络用于对等级生成和回归过程进行建模,而马尔可夫随机字段用于对生成的等级之间的置信度平滑度约束进行建模。实验结果表明,我们提出的CGM在四个评估指标方面明显优于最新方法,并且在数据稀疏性增加时具有更大的性能余量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号