首页> 外文期刊>Knowledge-Based Systems >Mixture distribution modeling for scalable graph-based semi-supervised learning
【24h】

Mixture distribution modeling for scalable graph-based semi-supervised learning

机译:可扩展图基半监督学习的混合分布模型

获取原文
获取原文并翻译 | 示例

摘要

Graph-based semi-supervised learning (SSL) has been widely investigated in recent works considering its powerful ability to naturally incorporate the diverse types of information and measurements. However, traditional graph-based SSL methods have cubic complexities and leading to low scalability. In this paper, we propose to perform graph-based SSL on mixture distribution components, named Mixture-distribution based Graph Smoothing (MGS), to address this challenge. Specifically, the intrinsic distributions of data are captured by a mixture density estimation model. A novel mixture-distribution based objective energy function is further proposed to incorporate few available annotations, which ensures the model complexity is irrelevant to the number of raw instances. The energy function can be simplified and effectively solved by viewing the instances and mixture components as the point clouds. Experiments on large datasets demonstrate the remarkable performance improvements and scalability of the proposed model, which proves the superiority of the MGS model. (C) 2020 Elsevier B.V. All rights reserved.
机译:基于图形的半监督学习(SSL)在最近的作品中已被广泛调查,考虑到其强大的自然能够纳入各种信息和测量的能力。但是,传统的基于图形的SSL方法具有立方体复杂性并导致低可扩展性。在本文中,我们建议在混合分布组件上进行基于图形的SSL,命名为基于混合分布的图表平滑(MGS),以解决这一挑战。具体地,通过混合密度估计模型捕获数据的内在分布。进一步提出了一种新的混合分布的目标能量功能,以纳入一些可用的注释,这确保了模型复杂性与原始实例的数量无关。通过将实例和混合组件视为点云,可以简化和有效地解决能量函数。大型数据集的实验证明了所提出的模型的显着性能改进和可扩展性,从而证明了MGS模型的优越性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号