首页> 外文期刊>ACM Transactions on Interactive Intelligent Systems >Quantitative Study of Music Listening Behavior in a Smartphone Context
【24h】

Quantitative Study of Music Listening Behavior in a Smartphone Context

机译:智能手机环境下音乐聆听行为的定量研究

获取原文
获取原文并翻译 | 示例

摘要

Context-based services have attracted increasing attention because of the prevalence of sensor-rich mobile devices such as smartphones. The idea is to recommend information that a user would be interested in according to the user's surrounding context. Although remarkable progress has been made to contextualize music playback, relatively little research has been made using a large collection of real-life listening records collected in situ. In light of this fact, we present in this article a quantitative study of the personal, situational, and musical factors of musical preference in a smartphone context, using a new dataset comprising the listening records and self-report context annotation of 48 participants collected over 3wk via an Android app. Although the number of participants is limited and the population is biased towards students, the dataset is unique in that it is collected in a daily context, with sensor data and music listening profiles recorded at the same time. We investigate 3 core research questions evaluating the strength of a rich set of low-level and high-level audio features for music usage auto-tagging (i.e., music preference in different user activities), the strength of time-domain and frequency-domain sensor features for user activity classification, and how user factors such as personality traits are correlated with the predictability of music usage and user activity, using a closed set of 8 activity classes. We provide an in-depth discussion of the main findings of this study and their implications for the development of context-based music services for smartphones.
机译:由于诸如智能手机之类的传感器丰富的移动设备的普及,基于上下文的服务已引起越来越多的关注。这个想法是根据用户周围的环境来推荐用户感兴趣的信息。尽管在音乐播放的情境化方面已取得了显着进展,但使用大量现场收集的现实听音记录的研究相对较少。有鉴于此,我们在本文中对使用智能手机进行音乐偏好的个人,情境和音乐因素进行了定量研究,使用了一个新的数据集,该数据集包括48位参与者收集的听力记录和自我报告的上下文注释,通过Android应用3wk。尽管参与者的数量有限且人口偏向学生,但该数据集是独特的,因为它是在每天的情境中收集的,同时记录了传感器数据和音乐收听配置文件。我们调查了三个核心研究问题,这些问题评估了用于音乐使用自动标记(即,不同用户活动中的音乐偏好),时域和频域的强度的丰富的低级和高级音频功能集的强度使用8个活动类别的封闭集,用户活动分类的传感器功能以及诸如个性特征之类的用户因素如何与音乐使用和用户活动的可预测性相关。我们对本研究的主要发现及其对开发智能手机基于上下文的音乐服务的意义进行了深入的讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号