首页> 外文期刊>ACM transactions on intelligent systems >Mining Geographic-Temporal-Semantic Patterns in Trajectories for Location Prediction
【24h】

Mining Geographic-Temporal-Semantic Patterns in Trajectories for Location Prediction

机译:挖掘轨迹中的地理-时间-语义模式以进行位置预测

获取原文
获取原文并翻译 | 示例

摘要

In recent years, research on location predictions by mining trajectories of users has attracted a lot of attention. Existing studies on this topic mostly treat such predictions as just a type of location recommendation, that is, they predict the next location of a user using location recommenders. However, an user usually visits somewhere for reasons other than interestingness. In this article, we propose a novel mining-based location prediction approach called Geographic-Temporal-Semantic-based Location Prediction (GTS-LP), which takes into account a user's geographic-triggered intentions, temporal-triggered intentions, and semantic-triggered intentions, to estimate the probability of the user in visiting a location. The core idea underlying our proposal is the discovery of trajectory patterns of users, namely GTS patterns, to capture frequent movements triggered by the three kinds of intentions. To achieve this goal, we define a new trajectory pattern to capture the key properties of the behaviors that are motivated by the three kinds of intentions from trajectories of users. In our GTS-LP approach, we propose a series of novel matching strategies to calculate the similarity between the current movement of a user and discovered GTS patterns based on various moving intentions. On the basis of similitude, we make an online prediction as to the location the user intends to visit. To the best of our knowledge, this is the first work on location prediction based on trajectory pattern mining that explores the geographic, temporal, and semantic properties simultaneously. By means of a comprehensive evaluation using various real trajectory datasets, we show that our proposed GTS-LP approach delivers excellent performance and significantly outperforms existing state-of-the-art location prediction methods.
机译:近年来,关于通过用户的挖掘轨迹进行位置预测的研究引起了广泛的关注。关于该主题的现有研究大多将这样的预测仅视为一种位置推荐,即,它们使用位置推荐器来预测用户的下一个位置。但是,用户通常出于兴趣之外的原因访问某个地方。在本文中,我们提出了一种新颖的基于挖掘的位置预测方法,称为基于地理,时空,语义的位置预测(GTS-LP),该方法考虑了用户的地理触发意图,时间触发意图和语义触发目的,以估计用户访问某个位置的概率。我们提案的核心思想是发现用户的轨迹模式,即GTS模式,以捕获由三种意图触发的频繁运动。为了实现此目标,我们定义了一种新的轨迹模式来捕获行为的关键属性,这些行为是由用户轨迹中的三种意图所激发的。在我们的GTS-LP方法中,我们提出了一系列新颖的匹配策略,以基于各种移动意图来计算用户当前运动与发现的GTS模式之间的相似度。基于相似度,我们会对用户打算访问的位置进行在线预测。据我们所知,这是基于轨迹模式挖掘的位置预测的第一项工作,它同时探索了地理,时间和语义属性。通过使用各种实际轨迹数据集的综合评估,我们表明,我们提出的GTS-LP方法具有出色的性能,并且明显优于现有的最新位置预测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号