首页> 外文期刊>ACM transactions on intelligent systems >Beyond Relevance: Explicitly Promoting Novelty and Diversity in Tag Recommendation
【24h】

Beyond Relevance: Explicitly Promoting Novelty and Diversity in Tag Recommendation

机译:超越相关性:明确促进标签推荐中的新颖性和多样性

获取原文
获取原文并翻译 | 示例

摘要

The design and evaluation of tag recommendation methods has historically focused on maximizing the relevance of the suggested tags for a given object, such as a movie or a song. However, relevance by itself may not be enough to guarantee recommendation usefulness. Promoting novelty and diversity in tag recommendation not only increases the chances that the user will select "some" of the recommended tags but also promotes complementary information (i.e., tags), which helps to cover multiple aspects or topics related to the target object. Previous work has addressed the tag recommendation problem by exploiting at most two of the following aspects: (1) relevance, (2) explicit topic diversity, and (3) novelty. In contrast, here we tackle these three aspects conjointly, by introducing two new tag recommendation methods that cover all three aspects of the problem at different levels. Our first method, called Random Forest with topic-related attributes, or RFt, extends a relevance-driven tag recommender based on the Random Forest (RF) learning-to-rank method by including new tag attributes to capture the extent to which a candidate tag is related to the topics of the target object. This solution captures topic diversity as well as novelty at the attribute level while aiming at maximizing relevance in its objective function. Our second method, called Explicit Tag Recommendation Diversifier with Novelty Promotion, or xTReND, reranks the recommendations provided by any tag recommender to jointly promote relevance, novelty, and topic diversity. We use RFt as a basic recommender applied before the reranking, thus building a solution that addresses the problem at both attribute and objective levels. Furthermore, to enable the use of our solutions on applications in which category information is unavailable, we investigate the suitability of using latent Dirichlet allocation (LDA) to automatically generate topics for objects. We evaluate all tag recommendation approaches using real data from five popular Web 2.0 applications. Our results show that RFt greatly outperforms the relevance-driven RF baseline in diversity while producing gains in relevance as well. We also find that our new xTReND reranker obtains considerable gains in both novelty and relevance when compared to that same baseline while keeping the same relevance levels. Furthermore, compared to our previous reranker method, xTReD, which does not consider novelty, xTReND is also quite effective, improving the novelty of the recommended tags while keeping similar relevance and diversity levels in most datasets and scenarios. Comparing our two new proposals, we find that xTReND considerably outperforms RFt in terms of novelty and diversity with only small losses (under 4%) in relevance. Overall, considering the trade-off among relevance, novelty, and diversity, our results demonstrate the superiority of xTReND over the baselines and the proposed alternative, RFt. Finally, the use of automatically generated latent topics as an alternative to manually labeled categories also provides significant improvements, which greatly enhances the applicability of our solutions to applications where the latter is not available.
机译:标签推荐方法的设计和评估历来集中在最大化建议标签对给定对象(例如电影或歌曲)的相关性。但是,仅靠相关性不足以保证推荐的有用性。促进标签推荐中的新颖性和多样性不仅增加了用户选择推荐标签中“一些”的机会,而且还促进了补充信息(即标签),这有助于涵盖与目标对象相关的多个方面或主题。先前的工作通过利用以下两个方面中的最多两个方面解决了标签推荐问题:(1)相关性;(2)明确的主题多样性;(3)新颖性。相反,在这里,我们通过引入两种新的标签推荐方法来联合解决这三个方面,这两种方法分别涵盖了问题的所有三个方面。我们的第一种方法称为具有主题相关属性的随机森林(RFt),它通过包含新的标签属性来捕获候选者的程度,从而扩展了基于随机森林(RF)学习排名的基于相关性的标签推荐者标签与目标对象的主题有关。该解决方案在属性级别捕获主题多样性以及新颖性,同时旨在最大程度地提高其目标功能的相关性。我们的第二种方法,称为带有新颖性促进的显式标签推荐多样化器(xTReND),对任何标签推荐器提供的推荐进行排名,以共同促进相关性,新颖性和主题多样性。我们将RFt用作重新排名之前应用的基本推荐者,从而构建了一个在属性和客观层面都解决该问题的解决方案。此外,为了使我们的解决方案能够用于类别信息不可用的应用程序,我们研究了使用潜在狄利克雷分配(LDA)为对象自动生成主题的适合性。我们使用来自五个流行的Web 2.0应用程序的真实数据评估所有标签推荐方法。我们的结果表明,RFt在多样性方面远胜于相关性驱动的RF基准,同时也产生了相关性收益。我们还发现,与相同的基准相比,我们的新型xTReND重新排序器在保持相同的相关性水平的同时,在新颖性和相关性方面均获得了可观的收益。此外,与我们之前未考虑新颖性的reTranker方法xTReD相比,xTReND也非常有效,可以提高推荐标签的新颖性,同时在大多数数据集和场景中保持相似的相关性和多样性水平。比较我们的两个新提议,我们发现xTReND在新颖性和多样性方面大大优于RFt,相关性仅很小(低于4%)。总体而言,考虑到相关性,新颖性和多样性之间的权衡,我们的结果证明了xTReND优于基线和建议的替代方案RFt。最后,使用自动生成的潜在主题作为手动标记的类别的替代方法也提供了显着的改进,这极大地增强了我们的解决方案在没有后者的应用程序中的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号