首页> 外文期刊>ACM transactions on intelligent systems >A Novel Continuous and Structural VAR Modeling Approach and Its Application to Reactor Noise Analysis
【24h】

A Novel Continuous and Structural VAR Modeling Approach and Its Application to Reactor Noise Analysis

机译:一种新颖的连续结构VAR建模方法及其在反应堆噪声分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

A vector autoregressive model in discrete time domain (DVAR) is often used to analyze continuous time, multivariate, linear Markov systems through their observed time series data sampled at discrete timesteps. Based on previous studies, the DVAR model is supposed to be a noncanonical representation of the system, that is, it does not correspond to a unique system bijectively. However, in this article, we characterize the relations of the DVAR model with its corresponding Structural Vector AR (SVAR) and Continuous Time Vector AR (CTVAR) models through a finite difference method across continuous and discrete time domain. We further clarify that the DVAR model of a continuous time, multivariate, linear Markov system is canonical under a highly generic condition. Our analysis shows that we can uniquely reproduce its SVAR and CTVAR models from the DVAR model. Based on these results, we propose a novel Continuous and Structural Vector Autoregressive (CSVAR) modeling approach to derive the SVAR and the CTVAR models from their DVAR model empirically derived from the observed time series of continuous time linear Markov systems. We demonstrate its superior performance through some numerical experiments on both artificial and real-world data.
机译:离散时域(DVAR)中的向量自回归模型通常用于通过在离散时间步长采样的观测时间序列数据来分析连续时间,多元线性马尔可夫系统。根据以前的研究,DVAR模型被认为是系统的非规范表示,也就是说,它不完全对应于唯一的系统。但是,在本文中,我们通过跨连续和离散时域的有限差分方法,描述了DVAR模型与其对应的结构矢量AR(SVAR)和连续时间矢量AR(CTVAR)模型之间的关系。我们进一步阐明,在高度通用的条件下,连续时间,多元线性马尔可夫系统的DVAR模型是典范的。我们的分析表明,我们可以从DVAR模型中唯一地复制其SVAR和CTVAR模型。基于这些结果,我们提出了一种新颖的连续和结构矢量自回归(CSVAR)建模方法,以根据经验值从连续时间线性马尔可夫系统的观测时间序列中得出的DVAR模型中得出SVAR和CTVAR模型。我们通过在人工和真实数据上进行的一些数值实验来证明其优越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号