首页> 外文期刊>ACM transactions on intelligent systems >Finding Semantically Valid and Relevant Topics by Association-Based Topic Selection Model
【24h】

Finding Semantically Valid and Relevant Topics by Association-Based Topic Selection Model

机译:通过基于关联的主题选择模型查找语义有效和相关的主题

获取原文
获取原文并翻译 | 示例

摘要

Topic modelling methods such as Latent Dirichlet Allocation (LDA) have been successfully applied to various fields, since these methods can effectively characterize document collections by using a mixture of semanti-cally rich topics. So far, many models have been proposed. However, the existing models typically outperform on full analysis on the whole collection to find all topics but difficult to capture coherent and specifically meaningful topic representations. Furthermore, it is very challenging to incorporate user preferences into existing topic modelling methods to extract relevant topics. To address these problems, we develop a novel personalized Association-based Topic Selection (ATS) model, which can identify semantically valid and relevant topics from a set of raw topics based on the semantical relatedness between users' preferences and the structured patterns captured in topics. The advantage of the proposed ATS model is that it enables an interactive topic modelling process driven by users' specific interests. Based on three benchmark datasets, namely, RCV1, R8, and WT10G under the context of information filtering (IF) and information retrieval (IR), our rigorous experiments show that the proposed ATS model can effectively identify relevant topics with respect to users' specific interests, and hence to improve the performance of IF and IR.
机译:诸如潜在的狄利克雷分配(LDA)之类的主题建模方法已成功应用于各个领域,因为这些方法可以通过使用大量语义丰富的主题来有效地描述文档集合。到目前为止,已经提出了许多模型。但是,现有模型通常在对整个馆藏进行全面分析以找到所有主题方面表现要好,但是很难捕获连贯且特别有意义的主题表示形式。此外,将用户偏好整合到现有主题建模方法中以提取相关主题非常具有挑战性。为了解决这些问题,我们开发了一种新颖的个性化基于关联的主题选择(ATS)模型,该模型可以根据用户偏好和主题中捕获的结构化模式之间的语义相关性,从一组原始主题中识别出语义有效和相关主题。 。所提出的ATS模型的优点在于,它可以实现由用户的特定兴趣驱动的交互式主题建模过程。在信息过滤(IF)和信息检索(IR)的背景下,基于RCV1,R8和WT10G这三个基准数据集,我们的严格实验表明,所提出的ATS模型可以有效地识别与用户特定需求相关的主题利益,从而提高中频和红外的性能。

著录项

  • 来源
    《ACM transactions on intelligent systems》 |2018年第1期|3.1-3.22|共22页
  • 作者单位

    Beijing Engineering Research Center of Massive Language Information Processing and Cloud Computing Application Beijing Institute of Technology and Beijing Advanced Innovation Center for Imaging Technology;

    School of Electrical Engineering and Computer Science, Queensland University of Technology(QUT);

    City University of Hong Kong;

    School ofElectrical Engineering and Computer Science, Queensland University of Technology(QUT);

    School ofElectrical Engineering and Computer Science, Queensland University of Technology(QUT);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Topic selection; topic evaluation; topic components; information filtering;

    机译:主题选择;主题评估;主题组成;信息过滤;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号