首页> 外文OA文献 >Finding Semantically Valid and Relevant Topics by Association-Based Topic Selection Model
【2h】

Finding Semantically Valid and Relevant Topics by Association-Based Topic Selection Model

机译:通过基于关联的主题选择模型查找语义有效和相关主题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Topic modelling methods such as Latent Dirichlet Allocation (LDA) have been successfully applied to various fields, since these methods can effectively characterize document collections by using a mixture of semantically rich topics. So far, many models have been proposed. However, the existing models typically outperform on full analysis on the whole collection to find all topics but difficult to capture coherent and specifically meaningful topic representations. Furthermore, it is very challenging to incorporate user preferences into existing topic modelling methods to extract relevant topics. To address these problems, we develop a novel personalized Association-based Topic Selection (ATS) model, which can identify semantically valid and relevant topics from a set of raw topics based on the semantical relatedness between users’ preferences and the structured patterns captured in topics. The advantage of the proposed ATS model is that it enables an interactive topic modelling process driven by users’ specific interests. Based on three benchmark datasets, namely, RCV1, R8, and WT10G under the context of information filtering (IF) and information retrieval (IR), our rigorous experiments show that the proposed ATS model can effectively identify relevant topics with respect to users’ specific interests, and hence to improve the performance of IF and IR.
机译:诸如潜在Dirichlet分配(LDA)的主题建模方法已成功应用于各种字段,因为这些方法可以通过使用语义丰富的主题的混合有效地表征文档收集。到目前为止,已经提出了许多模型。但是,现有模型通常会在整个集合上完全分析,找到所有主题,但难以捕获连贯性和专门有意义的主题表示。此外,将用户偏好结合到现有主题建模方法中是非常具有挑战性的,以提取相关主题。为了解决这些问题,我们开发了一种新颖的个性化关联的主题选择(ATS)模型,它可以根据用户偏好与主题捕获的结构化模式之间的语义相关性来识别一组原始主题的语义有效和相关主题。所提出的ATS模型的优点是它使得它能够由用户的特定兴趣推动的互动主题建模过程。基于三个基准数据集,即RCV1,R8和WT10G在信息过滤(IF)和信息检索(IR)下,我们严格的实验表明,所提出的ATS模型可以有效地识别关于用户特定的相关主题利益,从而提高IF和IR的表现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号