首页> 外文期刊>ACM Transactions on Information Systems >Meta Methods for Model Sharing in Personal Information Systems
【24h】

Meta Methods for Model Sharing in Personal Information Systems

机译:个人信息系统中模型共享的元方法

获取原文
获取原文并翻译 | 示例

摘要

This article introduces a methodology for automatically organizing document collections into thematic categories for Personal Information Management (PIM) through collaborative sharing of machine learning models in an efficient and privacy-preserving way. Our objective is to combine multiple independently learned models from several users to construct an advanced ensemble-based decision model by taking the knowledge of multiple users into account in a decentralized manner, for example, in a peer-to-peer overlay network. High accuracy of the corresponding supervised (classification) and unsupervised (clustering) methods is achieved by restrictively leaving out uncertain documents rather than assigning them to inappropriate topics or clusters with low confidence. We introduce a formal probabilistic model for the resulting ensemble based meta methods and explain how it can be used for constructing estimators and for goal-oriented tuning. Comprehensive evaluation results on different reference data sets illustrate the viability of our approach.
机译:本文介绍了一种方法,该方法可以通过以高效且保护隐私的方式协作共享机器学习模型,将文档集合自动组织为个人信息管理(PIM)的主题类别。我们的目标是通过分散地考虑多个用户的知识,例如在对等覆盖网络中,结合来自多个用户的多个独立学习的模型,以构建基于集成的高级决策模型。通过限制性地遗漏不确定的文档,而不是以低置信度将它们分配给不合适的主题或类,可以实现相应的监督(分类)和非监督(聚类)方法的高精度。我们为所得的基于集合的元方法引入了一个正式的概率模型,并解释了如何将其用于构造估计量和面向目标的调整。在不同参考数据集上的综合评估结果说明了我们方法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号