首页> 外文期刊>ACM Transactions on Information Systems >Learning with Click Graph for Query Intent Classification
【24h】

Learning with Click Graph for Query Intent Classification

机译:使用点击图学习以进行查询意图分类

获取原文
获取原文并翻译 | 示例

摘要

Topical query classification, as one step toward understanding users' search intent, is gaining increasing attention in information retrieval. Previous works on this subject primarily focused on enrichment of query features, for example, by augmenting queries with search engine results. In this work, we investigate a completely orthogonal approach-instead of improving feature representation, we aim at drastically increasing the amount of training data. To this end, we propose two semisupervised learning methods that exploit user click-through data. In one approach, we infer class memberships of unlabeled queries from those of labeled ones according to their proximities in a click graph; and then use these automatically labeled queries to train classifiers using query terms as features. In a second approach, click graph learning and query classifier training are conducted jointly with an integrated objective. Our methods are evaluated in two applications, product intent and job intent classification. In both cases, we expand the training data by over two orders of magnitude, leading to significant improvements in classification performance. An additional finding is that with a large amount of training data obtained in this fashion, a classifier based on simple query term features can outperform those using state-of-the-art, augmented features.
机译:作为了解用户搜索意图的一个步骤,主题查询分类在信息检索中越来越受到关注。以前有关该主题的工作主要集中在查询功能的丰富上,例如,通过使用搜索引擎结果扩展查询。在这项工作中,我们研究了一种完全正交的方法,而不是改善特征表示,而是旨在大幅增加训练数据的数量。为此,我们提出了两种利用用户点击数据的半监督学习方法。在一种方法中,我们根据点击图中的接近程度,从未标记查询的类成员资格中推断出未标记查询的类成员身份。然后使用这些自动标记的查询来训练以查询字词为特征的分类器。在第二种方法中,点击图学习和查询分类器培训是与一个集成目标共同进行的。我们的方法在两个应用程序中进行了评估,即产品意图和工作意图分类。在这两种情况下,我们将训练数据扩展两个数量级以上,从而显着改善了分类性能。另一个发现是,以这种方式获得的大量训练数据,基于简单查询词特征的分类器可以胜过使用最新的增强特征的分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号