首页> 外文期刊>ACM SIGIR FORUM >Learning Query and Document Relevance from arnWeb-scale Click Graph
【24h】

Learning Query and Document Relevance from arnWeb-scale Click Graph

机译:从arnWeb规模的Click Graph学习查询和文档相关性

获取原文
获取原文并翻译 | 示例

摘要

Click-through logs over query-document pairs provide richrnand valuable information for multiple tasks in informationrnretrieval. This paper proposes a vector propagation algorithmrnon the click graph to learn vector representations forrnboth queries and documents in the same semantic space.rnThe proposed approach incorporates both click and contentrninformation, and the produced vector representationsrncan directly improve ranking performance for queries andrndocuments that have been observed in the click log. Forrnnew queries and documents that are not in the click log, wernpropose a two-step framework to generate the vector representation,rnwhich signifcantly improves the coverage of ourrnvectors while maintaining the high quality. Experiments onrnWeb-scale search logs from a major commercial search enginerndemonstrate the eu000bectiveness and scalability of the proposedrnmethod. Evaluation results show that NDCG scoresrnare signifcantly improved against multiple baselines by usingrnthe proposed method both as a ranking model and as arnfeature in a learning-to-rank framework.
机译:查询文档对上的点击后日志为信息检索中的多个任务提供了丰富而有价值的信息。本文提出了一种矢量传播算法,即在没有点击图的情况下,在相同的语义空间中学习查询和文档的矢量表示。建议的方法将点击和内容信息相结合,所产生的矢量表示可以直接提高对查询和文档中已观察到的文档的排名性能。点击日志。对于不在单击日志中的新查询和文档,我们提出了一个两步框架来生成矢量表示,这在保持高质量的同时显着提高了矢量的覆盖率。来自主要商业搜索引擎的Web级搜索日志的实验证明了所提出方法的功能和可扩展性。评估结果表明,通过将所提出的方法既用作排名模型又用作学习排名框架中的学习功能,NDCG得分相对于多个基准有了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号