首页> 外文期刊>ACM Transactions on Information Systems >Multilingual Review-aware Deep Recommender System via Aspect-based Sentiment Analysis
【24h】

Multilingual Review-aware Deep Recommender System via Aspect-based Sentiment Analysis

机译:通过基于方面的情感分析,多语言审查 - 感知深层推荐系统

获取原文
获取原文并翻译 | 示例

摘要

With the dramatic expansion of international markets, consumers write reviews in different languages, which poses a new challenge for Recommender Systems (RSs) dealing with this increasing amount of multilingual information. Recent studies that leverage deep-learning techniques for review-aware RSs have demonstrated their effectiveness in modelling fine-grained user-item interactions through the aspects of reviews. However, most of these models can neither take full advantage of the contextual information from multilingual reviews nor discriminate the inherent ambiguity of words originated from the user's different tendency in writing. To this end, we propose a novel Multilingual Review-aware Deep Recommendation Model (MrRec) for rating prediction tasks. MrRec mainly consists of two parts: (1) Multilingual aspect-based sentiment analysis module (MABSA), which aims to jointly extract aligned aspects and their associated sentiments in different languages simultaneously with only requiring overall review ratings. (2) Multilingual recommendation module that learns aspect importances of both the user and item with considering different contributions of multiple languages and estimates aspect utility via a dual interactive attention mechanism integrated with aspect-specific sentiments from MABSA. Finally, overall ratings can be inferred by a prediction layer adopting the aspect utility value and aspect importance as inputs. Extensive experimental results on nine real-world datasets demonstrate the superior performance and interpretability of our model.
机译:随着国际市场的戏剧性扩展,消费者在不同语言编写评论,对推荐系统(RSS)构成了处理这种越来越多的多语言信息的新挑战。最近利用深度学习技术的审查感知RSS的研究已经证明了它们在通过评论的各个方面建模细粒度的用户项目互动的有效性。然而,这些模型中的大多数都无法充分利用来自多语言评语的上下文信息,也无法区分源自用户的不同趋势的词语的固有模糊性。为此,我们提出了一种新颖的多语言审查感知深度推荐模型(MRREC),用于评级预测任务。 MRREC主要由两部分组成:(1)基于多语言方面的情绪分析模块(MABSA),其目的是同时共同提取不同语言的对齐方面及其相关情绪,只需要整体审查评级。 (2)多语言推荐模块,用于考虑多种语言的不同贡献,通过与来自MABSA的方面特定情绪集成的双交互式注意力机制来了解用户和项目的方面重要性。最后,可以通过采用方面实用程序值和方面重要性作为输入的预测层来推断整体评级。九世界数据集的广泛实验结果证明了我们模型的卓越性能和可解释性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号