首页> 外文期刊>Computer speech and language >Enhancing Arabic aspect-based sentiment analysis using deep learning models
【24h】

Enhancing Arabic aspect-based sentiment analysis using deep learning models

机译:利用深度学习模型提高阿拉伯语基于宽视的情绪分析

获取原文
获取原文并翻译 | 示例

摘要

Aspect-based sentiment analysis is a special type of sentiment analysis that aims to identify the discussed aspects and their sentiment polarities in a given review. In this paper, two deep learning models are proposed to address essential aspect-based sentiment analysis tasks: aspect-category identification and aspect-sentiment classification. For the first task, an identification model is proposed based on a convolutional neural network and stacked independent long-short term memory. For the second task, a classification model is proposed based on stacked bidirectional independent long-short term memory, a position-weighting mechanism, and multiple attention mechanism layers. The proposed models are evaluated using the Arabic SemEval-2016 dataset for the Hotels domain. Experimental results demonstrate that the proposed models outperform the baseline and other models, where the first model, C-IndyLSTM, achieves an F_1 measure of 58.08%, and the second model, MBRA, achieves an accuracy measure of 87.31%.
机译:基于方面的情绪分析是一种特殊的情感分析,旨在在给定的审查中识别讨论的方面和他们的情感极性。本文提出了两个深入学习模型来解决基于基于基于方面的情绪分析任务:方面类别识别和方面情绪分类。对于第一任务,基于卷积神经网络提出识别模型并堆叠独立的长短短期存储器。对于第二任务,基于堆叠双向独立的长短短期存储器,位置加权机制和多个​​注意机制层提出了分类模型。使用Arabic Semeval-2016 DataSet来评估所提出的模型。实验结果表明,该模型优于基线和其他模型,其中第一型号C-Indylstm实现了58.08%的F_1测量,以及第二种模型,MBRA,实现了87.31%的准确度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号