首页> 外文期刊>ACM Transactions on Information Systems >Effects of Personalized and Aggregate Top-N Recommendation Lists on User Preference Ratings
【24h】

Effects of Personalized and Aggregate Top-N Recommendation Lists on User Preference Ratings

机译:个性化和聚合TOP-N建议书对用户偏好评级的影响

获取原文
获取原文并翻译 | 示例

摘要

Prior research has shown a robust effect of personalized product recommendations on user preference judgments for items. Specifically, the display of system-predicted preference ratings as item recommendations has been shown in multiple studies to bias users' preference ratings after item consumption in the direction of the predicted rating. Top-N lists represent another common approach for presenting item recommendations in recommender systems. Through three controlled laboratory experiments, we show that top-N lists do not induce a discernible bias in user preference judgments. This result is robust, holding for both lists of personalized item recommendations and lists of items that are top-rated based on averages of aggregate user ratings. Adding numerical ratings to the list items does generate a bias, consistent with earlier studies. Thus, in contexts where preference biases are of concern to an online retailer or platform, top-N lists, without numerical predicted ratings, would be a promising format for displaying item recommendations.
机译:现有研究表明,个性化产品建议对项目的用户偏好判断的强大效果。具体地,作为项目建议的系统预测偏好额定值的显示已经显示为在预测评级方向上的项目消耗后偏置用户的偏好额定值。 TOP-N列表代表了另一种用于在推荐系统中呈现项目建议的常用方法。通过三个受控实验室实验,我们表明Top-N列表不会在用户偏好判断中引起可辨别的偏见。此结果是强大的,适用于基于聚合用户额定值的平均值的个性化项目建议和项目列表的列表。向列表项添加数字额定值确实会产生偏差,与早期的研究一致。因此,在偏好偏差对在线零售商或平台的关注的背景下,在没有数值预测的评级的Top-N列表中,将是用于显示项目建议的有希望的格式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号