首页> 美国卫生研究院文献>Computational Intelligence and Neuroscience >A Collaborative Location Based Travel Recommendation System through Enhanced Rating Prediction for the Group of Users
【2h】

A Collaborative Location Based Travel Recommendation System through Enhanced Rating Prediction for the Group of Users

机译:通过增强的等级预测为用户组提供基于位置的协作旅行推荐系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rapid growth of web and its applications has created a colossal importance for recommender systems. Being applied in various domains, recommender systems were designed to generate suggestions such as items or services based on user interests. Basically, recommender systems experience many issues which reflects dwindled effectiveness. Integrating powerful data management techniques to recommender systems can address such issues and the recommendations quality can be increased significantly. Recent research on recommender systems reveals an idea of utilizing social network data to enhance traditional recommender system with better prediction and improved accuracy. This paper expresses views on social network data based recommender systems by considering usage of various recommendation algorithms, functionalities of systems, different types of interfaces, filtering techniques, and artificial intelligence techniques. After examining the depths of objectives, methodologies, and data sources of the existing models, the paper helps anyone interested in the development of travel recommendation systems and facilitates future research direction. We have also proposed a location recommendation system based on social pertinent trust walker (SPTW) and compared the results with the existing baseline random walk models. Later, we have enhanced the SPTW model for group of users recommendations. The results obtained from the experiments have been presented.
机译:Web及其应用的快速增长对推荐系统产生了巨大的重要性。推荐器系统被应用在各个领域中,旨在根据用户兴趣生成建议,例如项目或服务。基本上,推荐系统遇到许多问题,这些问题反映了有效性的下降。将强大的数据管理技术集成到推荐系统中可以解决此类问题,并且可以显着提高推荐质量。对推荐系统的最新研究揭示了一种利用社交网络数据以更好的预测和更高的准确性来增强传统推荐系统的想法。本文通过考虑各种推荐算法的使用,系统功能,不同类型的界面,过滤技术和人工智能技术,对基于社交网络数据的推荐器系统表达看法。在研究了现有模型的目标,方法和数据源的深度之后,本文可以帮助对旅行推荐系统开发感兴趣的任何人,并为将来的研究方向提供便利。我们还提出了一种基于社会相关信任步行者(SPTW)的位置推荐系统,并将结果与​​现有的基线随机步行模型进行了比较。后来,我们为用户推荐组增强了SPTW模型。已经给出了从实验中获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号