首页> 外文期刊>ACM Transactions on Information Systems >Efficient Learning-Based Recommendation Algorithms for Top-N Tasks and Top-N Workers in Large-Scale Crowdsourcing Systems
【24h】

Efficient Learning-Based Recommendation Algorithms for Top-N Tasks and Top-N Workers in Large-Scale Crowdsourcing Systems

机译:大规模众包系统中前N个任务和前N个工作者的基于学习的高效推荐算法

获取原文
获取原文并翻译 | 示例

摘要

The task and worker recommendation problems in crowdsourcing systems have brought up unique characteristics that are not present in traditional recommendation scenarios, i.e., the huge flow of tasks with short lifespans, the importance of workers' capabilities, and the quality of the completed tasks. These unique features make traditional recommendation approaches no longer satisfactory for task and worker recommendation in crowdsourcing systems. In this article, we propose a two-tier data representation scheme (defining a worker-category suitability score and a worker-task attractiveness score) to support personalized task and worker recommendations. We also extend two optimization methods, namely least mean square error and Bayesian personalized rank, to better fit the characteristics of task/worker recommendation in crowdsourcing systems. We then integrate the proposed representation scheme and the extended optimization methods along with the two adapted popular learning models, i.e., matrix factorization and kNN, and result in two lines of top-N recommendation algorithms for crowdsourcing systems: (1) Top-N-Tasks recommendation algorithms for discovering the top-N most suitable tasks for a given worker and (2) Top-N-Workers recommendation algorithms for identifying the top-N best workers for a task requester. An extensive experimental study is conducted that validates the effectiveness and efficiency of a broad spectrum of algorithms, accompanied by our analysis and the insights gained.
机译:众包系统中的任务和工人推荐问题具有传统推荐场景所不具备的独特特征,即寿命短,任务量大,工人能力的重要性以及已完成任务的质量。这些独特的功能使传统推荐方法不再适合众包系统中的任务和工作人员推荐。在本文中,我们提出了一种两层数据表示方案(定义了工人类别适用性得分和工人任务吸引力得分),以支持个性化的任务和工人推荐。我们还扩展了两种优化方法,即最小均方误差和贝叶斯个性化排名,以更好地适应众包系统中任务/工人推荐的特征。然后,我们将提出的表示方案和扩展的优化方法与两个适应的流行学习模型即矩阵分解和kNN集成在一起,得出了两行用于众包系统的top-N推荐算法:(1)Top-N-任务推荐算法,用于发现给定工作人员的前N名最适合的任务;以及(2)前N名工人的推荐算法,用于为任务请求者确定前N名最佳工人。进行了广泛的实验研究,以验证广泛算法的有效性和效率,并伴随我们的分析和获得的见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号