首页> 外文期刊>ACM Transactions on Information Systems >GeoMF++: Scalable Location Recommendation via Joint Geographical Modeling and Matrix Factorization
【24h】

GeoMF++: Scalable Location Recommendation via Joint Geographical Modeling and Matrix Factorization

机译:GeoMF ++:通过联合地理建模和矩阵分解的可扩展位置推荐

获取原文
获取原文并翻译 | 示例

摘要

Location recommendation is an important means to help people discover attractive locations. However, extreme sparsity of user-location matrices leads to a severe challenge, so it is necessary to take implicit feedback characteristics of user mobility data into account and leverage the location's spatial information. To this end, based on previously developed GeoMF, we propose a scalable and flexible framework, dubbed GeoMF++, for joint geographical modeling and implicit feedback-based matrix factorization. We then develop an efficient optimization algorithm for parameter learning, which scales linearly with data size and the total number of neighbor grids of all locations. GeoMF++ can be well explained from two perspectives. First, it subsumes two-dimensional kernel density estimation so that it captures spatial clustering phenomenon in user mobility data; Second, it is strongly connected with widely used neighbor additive models, graph Laplacian regularized models, and collective matrix factorization. Finally, we extensively evaluate GeoMF++ on two large-scale LBSN datasets. The experimental results show that GeoMF++ consistently outperforms the state-of-the-art and other competing baselines on both datasets in terms of NDCG and Recall. Besides, the efficiency studies show that GeoMF++ is much more scalable with the increase of data size and the dimension of latent space.
机译:位置推荐是帮助人们发现有吸引力的位置的重要手段。但是,用户位置矩阵的极度稀疏性带来了严峻的挑战,因此有必要考虑用户移动性数据的隐式反馈特性并利用位置的空间信息。为此,基于先前开发的GeoMF,我们提出了一个可扩展且灵活的框架,称为GeoMF ++,用于联合地理建模和基于隐式反馈的矩阵分解。然后,我们开发了一种用于参数学习的高效优化算法,该算法随数据大小和所有位置的相邻网格的总数线性缩放。 GeoMF ++可以从两个角度很好地解释。首先,它包含二维内核密度估计,以便捕获用户移动性数据中的空间聚类现象。其次,它与广泛使用的邻居加性模型,图拉普拉斯正则化模型和集体矩阵分解紧密相关。最后,我们在两个大型LBSN数据集上广泛评估了GeoMF ++。实验结果表明,就NDCG和Recall而言,GeoMF ++在两个数据集上始终优于最新技术和其他竞争基准。此外,效率研究表明,随着数据大小和潜在空间尺寸的增加,GeoMF ++具有更大的可扩展性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号