首页> 外文期刊>ACM Transactions on Graphics >MotioNet:3D Human Motion Reconstruction from Monocular Video with Skeleton Consistency
【24h】

MotioNet:3D Human Motion Reconstruction from Monocular Video with Skeleton Consistency

机译:Motionet:3D单目一象的人类运动重建与骨架一致性

获取原文
获取原文并翻译 | 示例

摘要

We introduce MotioNet, a deep neural network that directly reconstructs the motion of a 3D human skeleton from a monocular video. While previous methods rely on either rigging or inverse kinematics (IK) to associate a consistent skeleton with temporally coherent joint rotations, our method is the first data-driven approach that directly outputs a kinematic skeleton, which is a complete, commonly used motion representation. At the crux of our approach lies a deep neural network with embedded kinematic priors, which decomposes sequences of 2D joint positions into two separate attributes: a single, symmetric skeleton encoded by bone lengths, and a sequence of 3D joint rotations associated with global root positions and foot contact labels. These attributes are fed into an integrated forward kinematics (FK) layer that outputs 3D positions, which are compared to a ground truth. In addition, an adversarial loss is applied to the velocities of the recovered rotations to ensure that they lie on the manifold of natural joint rotations. The key advantage of our approach is that it learns to infer natural joint rotations directly from the training data rather than assuming an underlying model, or inferring them from joint positions using a data-agnostic IK solver. We show that enforcing a single consistent skeleton along with temporally coherent joint rotations constrains the solution space, leading to a more robust handling of self-occlusions and depth ambiguities.
机译:我们介绍MOCESET,这是一个深度神经网络,直接从单眼视频重建3D人骨架的运动。虽然以前的方法依赖于索具或逆运动学(IK),但是将一致的骨架与时间相干的关节旋转相关联,但我们的方法是第一种数据驱动方法,该方法直接输出运动骨架,这是一个完整的,常用的运动表示。在我们的方法中,我们的方法呈现一个深神经网络,具有嵌入式运动学前沿的深度神经网络,其将2D关节位置的序列分解为两个单独的属性:由骨长编码的单个,对称骨架,以及与全局根位置相关的3D关节旋转序列和脚接触标签。这些属性被馈入输出3D位置的集成前进运动学(FK)层,与地面真理相比。此外,对恢复旋转的速度施加过侵犯损失,以确保它们位于自然关节旋转的歧管上。我们方法的关键优势在于它学会直接从训练数据推断自然关节旋转,而不是假设底层模型,或者使用数据不可行的IK求解器从关节位置推断出来。我们表明,执行单一一致的骨架以及时间上相干的关节旋转限制了解决方案空间,导致自闭锁和深度歧义的更强大的处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号