首页> 外文期刊>ACM Transactions on Graphics >XNect: Real-time Multi-Person 3D Motion Capture with a Single RGB Camera
【24h】

XNect: Real-time Multi-Person 3D Motion Capture with a Single RGB Camera

机译:Xnect:使用单个RGB相机实时多人3D运动捕捉

获取原文
获取原文并翻译 | 示例

摘要

We present a real-time approach for multi-person 3D motion capture at over30 fps using a single RGB camera. It operates successfully in generic sceneswhich may contain occlusions by objects and by other people. Our method operatesin subsequent stages. The first stage is a convolutional neural network(CNN) that estimates 2D and 3D pose features along with identity assignmentsfor all visible joints of all individuals.We contribute a new architecture for this CNN, called SelecSLS Net, that uses novel selective long and short rangeskip connections to improve the information flow allowing for a drasticallyfaster network without compromising accuracy. In the second stage, a fullyconnectedneural network turns the possibly partial (on account of occlusion)2Dpose and3Dpose features for each subject into a complete3Dpose estimateper individual. The third stage applies space-time skeletal model fitting to thepredicted 2D and 3D pose per subject to further reconcile the 2D and 3D pose,and enforce temporal coherence. Our method returns the full skeletal pose injoint angles for each subject. This is a further key distinction from previouswork that do not produce joint angle results of a coherent skeleton in real timefor multi-person scenes. The proposed system runs on consumer hardware ata previously unseen speed of more than 30 fps given 512x320 images as inputwhile achieving state-of-the-art accuracy, which we will demonstrate on arange of challenging real-world scenes.
机译:我们在结束时提出了一种多人3D运动捕获的实时方法使用单个RGB相机30 FPS。它成功地在通用场景中运行这可能包含物体和其他人的闭塞。我们的方法运作在后续阶段。第一阶段是卷积神经网络(CNN)估计2D和3D姿势特征以及身份分配对于所有个人的所有可见关节。我们为此CNN提供了新的架构,称为Selecsls Net,它使用新颖的选择性长和短程跳过连接以提高允许急剧允许的信息流程更快的网络而不妥协的准确性。在第二阶段,一个完全连接的神经网络可能部分地(由于遮挡)2dpe和3dpose为每个受试者的特征进入完整的3dpes估计每个人。第三阶段适用于适合的时空骨架模型预测每个受试者的2D和3D姿势进一步调和2D和3D姿势,并强制执行时间一致性。我们的方法返回完整的骨架姿势每个主题的关节角度。这是与之前的进一步关键区别实时不产生相干骨架的关节角度结果对于多人场景。所提出的系统在消费者硬件上运行以前的512x320图像作为输入,以前看不到30 fps的速度在实现最先进的准确性的同时,我们将展示挑战性的现实世界场景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号