首页> 外文期刊>ACM Transactions on Graphics >VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera
【24h】

VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera

机译:VNect:使用单个RGB相机进行实时3D人姿估计

获取原文
获取原文并翻译 | 示例

摘要

We present the first real-time method to capture the full global 3D skeletal pose of a human in a stable, temporally consistent manner using a single RGB camera. Our method combines a new convolutional neural network (CNN) based pose regressor with kinematic skeleton fitting. Our novel fullyconvolutional pose formulation regresses 2D and 3D joint positions jointly in real time and does not require tightly cropped input frames. A real-time kinematic skeleton fitting method uses the CNN output to yield temporally stable 3D global pose reconstructions on the basis of a coherent kinematic skeleton. This makes our approach the first monocular RGB method usable in real-time applications such as 3D character control-thus far, the only monocular methods for such applications employed specialized RGB-D cameras. Our method’s accuracy is quantitatively on par with the best offline 3D monocular RGB pose estimation methods. Our results are qualitatively comparable to, and sometimes better than, results from monocular RGB-D approaches, such as the Kinect. However, we show that our approach is more broadly applicable than RGB-D solutions, i.e., it works for outdoor scenes, community videos, and low quality commodity RGB cameras.
机译:我们提出了第一个实时方法,使用单个RGB摄像机以稳定,时间上一致的方式捕获人类的完整全球3D骨骼姿势。我们的方法结合了基于运动神经骨架拟合的新型卷积神经网络(CNN)姿态回归器。我们新颖的全卷积姿势公式可实时使2D和3D关节位置实时回归,并且不需要严格裁剪输入框。实时运动骨架拟合方法使用CNN输出,以基于相干运动骨架产生时间稳定的3D全局姿态重构。这使我们的方法成为第一种在实时应用(例如3D字符控制)中可用的单眼RGB方法,因此,迄今为止,此类应用中仅有的单眼方法采用了专用RGB-D相机。我们的方法的准确性在数量上可以与最佳的离线3D单眼RGB姿势估计方法相提并论。我们的结果在质量上与单眼RGB-D方法(例如Kinect)的结果相当,有时甚至更好。但是,我们证明了我们的方法比RGB-D解决方案具有更广泛的适用性,即它适用于户外场景,社区视频和低质量的商用RGB相机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号