首页> 外文期刊>ACM Transactions on Graphics >O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis
【24h】

O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

机译:O-CNN:基于Octree的3D形分析卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

We present O-CNN, an Octree-based Convolutional Neural Network (CNN) for 3D shape analysis. Built upon the octree representation of 3D shapes, our method takes the average normal vectors of a 3D model sampled in the finest leaf octants as input and performs 3D CNN operations on the octants occupied by the 3D shape surface.We design a novel octree data structure to efficiently store the octant information and CNN features into the graphics memory and execute the entire O-CNN training and evaluation on the GPU. O-CNN supports various CNN structures and works for 3D shapes in different representations. By restraining the computations on the octants occupied by 3D surfaces, the memory and computational costs of the O-CNN grow quadratically as the depth of the octree increases, which makes the 3D CNN feasible for high-resolution 3D models. We compare the performance of the O-CNN with other existing 3D CNN solutions and demonstrate the efficiency and efficacy of O-CNN in three shape analysis tasks, including object classification, shape retrieval, and shape segmentation.
机译:我们呈现O-CNN,基于Octree的卷积神经网络(CNN),用于3D形状分析。基于3D形状的Octree表示,我们的方法采用最优选的叶八个模型中的3D模型的平均正常向量,如输入,并在3D形状表面占用的八个曲线上执行3D CNN操作。我们设计了一种新颖的Octree数据结构为了有效地将八营信息和CNN功能存储到图形存储器中,并在GPU上执行整个O-CNN培训和评估。 O-CNN支持各种CNN结构,并在不同的表示中用于3D形状。通过抑制由3D表面占用的八个含义的计算,O-CNN的存储器和计算成本随着八十六的深度而直角生长,这使得3D CNN可用于高分辨率3D模型。我们将O-CNN与其他现有3D CNN解决方案的性能进行比较,并展示O-CNN在三种形状分析任务中的效率和功效,包括对象分类,形状检索和形状分割。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号