首页> 外文期刊>ACM Transactions on Graphics >O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis
【24h】

O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

机译:O-CNN:用于3D形状分析的基于八进制的卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

We present O-CNN, an Octree-based Convolutional Neural Network (CNN) for 3D shape analysis. Built upon the octree representation of 3D shapes, our method takes the average normal vectors of a 3D model sampled in the finest leaf octants as input and performs 3D CNN operations on the octants occupied by the 3D shape surface.We design a novel octree data structure to efficiently store the octant information and CNN features into the graphics memory and execute the entire O-CNN training and evaluation on the GPU. O-CNN supports various CNN structures and works for 3D shapes in different representations. By restraining the computations on the octants occupied by 3D surfaces, the memory and computational costs of the O-CNN grow quadratically as the depth of the octree increases, which makes the 3D CNN feasible for high-resolution 3D models. We compare the performance of the O-CNN with other existing 3D CNN solutions and demonstrate the efficiency and efficacy of O-CNN in three shape analysis tasks, including object classification, shape retrieval, and shape segmentation.
机译:我们介绍O-CNN,这是一个基于八进制的卷积神经网络(CNN),用于3D形状分析。我们的方法以3D形状的八叉树表示为基础,以在最细叶八分圆中采样的3D模型的平均法线向量作为输入,并对3D形状表面所占据的八分圆执行3D CNN操作。以便将八分位信息和CNN功能有效地存储到图形内存中,并在GPU上执行整个O-CNN训练和评估。 O-CNN支持各种CNN结构,并以不同的表示形式处理3D形状。通过将计算限制在3D曲面占用的八分圆上,O-CNN的内存和计算成本会随着八叉树深度的增加而呈二次方增长,这使得3D CNN可用于高分辨率3D模型。我们将O-CNN与其他现有3D CNN解决方案的性能进行了比较,并证明了O-CNN在三个形状分析任务(包括对象分类,形状检索和形状分割)中的效率和功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号