首页> 外文期刊>ACM Transactions on Graphics >Resampling-aware Weighting Functions for Bidirectional Path Tracing Using Multiple Light Sub-Paths
【24h】

Resampling-aware Weighting Functions for Bidirectional Path Tracing Using Multiple Light Sub-Paths

机译:具有多个轻子路径的双向路径跟踪的重采样感知加权函数

获取原文
获取原文并翻译 | 示例

摘要

Bidirectional path tracing (BPT) with multiple importance sampling (MIS) is a popular technique for rendering realistic images. Recently, it has been shown that BPT can be improved by preparing multiple light sub-paths and by resampling a small number of light sub-paths from them to generate full paths with large contribution. Traditionally, for MIS weights, the balance heuristic has widely been used to minimize the upper bound of variance, where each full path is weighted in proportion to the probability of the path. Although the probability of the path can change due to the resampling process, the weighting functions used in the previous methods remain unaffected by the change in probability, resulting in less efficiency. To address this problem, we propose new weighting functions for BPT with multiple light sub-paths. Our main contribution is a precise formulation of the variance and the derivation of the weighting functions that can appropriately treat the change in probability. We demonstrate that our weighting functions significantly improve the image quality. We will release a simple version of our implementation as open source to ensure reproducibility.
机译:具有多重重要性采样(MIS)的双向路径跟踪(BPT)是一种渲染逼真的图像的流行技术。最近,已经表明,可以通过准备多个光子路径并从它们中重采样少量光子路径以产生具有较大贡献的完整路径来改善BPT。传统上,对于MIS权重,平衡启发法已广泛用于最小化方差上限,其中,每个完整路径的权重均与路径的概率成比例。尽管路径的概率可能由于重采样过程而改变,但先前方法中使用的加权函数不受概率改变的影响,从而导致效率降低。为了解决这个问题,我们为具有多个光子路径的BPT提出了新的加权函数。我们的主要贡献是方差的精确表述和加权函数的推导,可以适当地处理概率的变化。我们证明了加权功能可以显着改善图像质量。我们将发布实现的简单版本作为开放源代码,以确保可重复性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号