首页> 外文期刊>ACM Transactions on Graphics >InteractionFusion: Real-time Reconstruction of Hand Poses and Deformable Objects in Hand-object Interactions
【24h】

InteractionFusion: Real-time Reconstruction of Hand Poses and Deformable Objects in Hand-object Interactions

机译:InteractionFusion:手-物体交互中的手姿势和可变形物体的实时重建

获取原文
获取原文并翻译 | 示例

摘要

Hand-object interaction is challenging to reconstruct but important for many applications like HCI, robotics and so on. Previous works focus on either the hand or the object while we jointly track the hand poses, fuse the 3D object model and reconstruct its rigid and nonrigid motions, and perform all these tasks in real time. To achieve this, we first use a DNN to segment the hand and object in the two input depth streams and predict the current hand pose based on the previous poses by a pre-trained LSTM network. With this information, a unified optimization framework is proposed to jointly track the hand poses and object motions. The optimization integrates the segmented depth maps, the predicted motion, a spatial-temporal varying rigidity regularizer and a real-time contact constraint. A nonrigid fusion technique is further involved to reconstruct the object model. Experiments demonstrate that our method can solve the ambiguity caused by heavy occlusions between hand and object, and generate accurate results for various objects and interacting motions.
机译:手工与物体之间的交互对于重构具有挑战性,但对于诸如HCI,机器人技术等许多应用而言非常重要。在我们共同跟踪手势,融合3D对象模型并重建其刚性和非刚性运动并实时执行所有这些任务的同时,先前的工作着重于手或对象。为此,我们首先使用DNN在两个输入深度流中分割手和对象,并通过预先训练的LSTM网络基于先前的姿势预测当前的手姿势。利用此信息,提出了一个统一的优化框架,以共同跟踪手势和对象运动。优化过程集成了分段深度图,预测运动,时空变化的刚度正则化器和实时接触约束。非刚性融合技术还涉及重建对象模型。实验表明,该方法可以解决手与物体之间严重遮挡引起的歧义,并能为各种物体和相互作用的运动产生准确的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号