首页> 外文期刊>ACM Transactions on Graphics >A Unified Framework for Compression and Compressed Sensing of Light Fields and Light Field Videos
【24h】

A Unified Framework for Compression and Compressed Sensing of Light Fields and Light Field Videos

机译:光场和光场视频压缩和压缩感知的统一框架

获取原文
获取原文并翻译 | 示例

摘要

In this article we present a novel dictionary learning framework designed for compression and sampling of light fields and light field videos. Unlike previous methods, where a single dictionary with one-dimensional atoms is learned, we propose to train a Multidimensional Dictionary Ensemble (MDE). It is shown that learning an ensemble in the native dimensionality of the data promotes sparsity, hence increasing the compression ratio and sampling efficiency. To make maximum use of correlations within the light field data sets, we also introduce a novel nonlocal pre-clustering approach that constructs an Aggregate MDE (AMDE). The pre-clustering not only improves the image quality but also reduces the training time by an order of magnitude in most cases. The decoding algorithm supports efficient local reconstruction of the compressed data, which enables efficient real-time playback of high-resolution light field videos. Moreover, we discuss the application of AMDE for compressed sensing. A theoretical analysis is presented that indicates the required conditions for exact recovery of point-sampled light fields that are sparse under AMDE. The analysis provides guidelines for designing efficient compressive light field cameras. We use various synthetic and natural light field and light field video data sets to demonstrate the utility of our approach in comparison with the state-of-the-art learning-based dictionaries, as well as established analytical dictionaries.
机译:在本文中,我们提出了一种新颖的字典学习框架,旨在对光场和光场视频进行压缩和采样。与以前的方法不同,以前的方法是学习带有一维原子的单个词典,我们建议训练多维词典集合(MDE)。结果表明,学习数据的原始维数的集合会促进稀疏性,从而提高压缩率和采样效率。为了最大程度地利用光场数据集中的相关性,我们还介绍了一种新颖的非局部预聚类方法,该方法可构建聚合MDE(AMDE)。在大多数情况下,预聚类不仅可以改善图像质量,还可以将训练时间减少一个数量级。解码算法支持对压缩数据进行有效的本地重建,从而可以高效实时回放高分辨率的光场视频。此外,我们讨论了AMDE在压缩感测中的应用。提出了理论分析,该分析表明了精确恢复在AMDE下稀疏的点采样光场的必要条件。该分析为设计有效的压缩光场相机提供了指导。我们使用各种合成的和自然的光场和光场视频数据集来证明我们的方法与基于学习的最新字典以及已建立的分析字典相比的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号