首页> 外文期刊>ACM Transactions on Graphics >Deep Convolutional Priors for Indoor Scene Synthesis
【24h】

Deep Convolutional Priors for Indoor Scene Synthesis

机译:室内场景综合的深度卷积先验

获取原文
获取原文并翻译 | 示例

摘要

We present a convolutional neural network based approach for indoor scene synthesis. By representing 3D scenes with a semantically-enriched image-based representation based on orthographic top-down views, we learn convolutional object placement priors from the entire context of a room. Our approach iteratively generates rooms from scratch, given only the room architecture as input. Through a series of perceptual studies we compare the plausibility of scenes generated using our method against baselines for object selection and object arrangement, as well as scenes modeled by people. We find that our method generates scenes that are preferred over the baselines, and in some cases are equally preferred to human-created scenes.
机译:我们提出一种基于卷积神经网络的室内场景综合方法。通过基于基于正交的自顶向下视图的语义丰富的基于图像的表示来表示3D场景,我们可以从房间的整个上下文中学习卷积对象放置先验。在仅输入房间架构的情况下,我们的方法从头开始迭代生成房间。通过一系列的感知研究,我们将使用我们的方法生成的场景与对象选择和对象排列的基线以及人为建模的场景的合理性进行了比较。我们发现,我们的方法所生成的场景优于基线场景,在某些情况下,其场景同样优于人类创建的场景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号