首页> 外文期刊>Computers & Graphics >Deep style estimator for 3D indoor object collection organization and scene synthesis
【24h】

Deep style estimator for 3D indoor object collection organization and scene synthesis

机译:用于3D室内对象收集组织和场景综合的深度样式估计器

获取原文
获取原文并翻译 | 示例

摘要

Estimating the style compatibility between a pair of cross-category 3D indoor objects has received wide interests from the field of computer graphics in these years. Many previous works solve this task by extracting and analyzing the style-aware structures or elements from the input 3D models. In this paper, we propose a novel approach to solve this task by training a deep neural network to quantitatively assign a compatibility score between arbitrary pair of cross-category 3D objects. By entirely learning from raw data, the trained network is able to capture various compatibility conditions influenced by global style features, such as ergonomics and object category relation. The proposed deep estimator is generally robust and can facilitate various high-level tasks. We first show its application for object collection organization. After that, we show how layout-guided, style-consistent object retrieval for indoor scene synthesis can be achieved by integrating pairwise style estimations into a novel submodular formulation. Our experiments demonstrate the usability of the proposed approach, demonstrating results superior than previous works and even comparable with suggestions made by human observers.
机译:近年来,估计一对跨类别3D室内对象之间的样式兼容性已引起计算机图形学领域的广泛关注。许多以前的作品通过从输入3D模型中提取和分析样式感知的结构或元素来解决此任务。在本文中,我们提出了一种新颖的方法来解决此任务,方法是训练一个深度神经网络,以定量地分配任意对交叉类别3D对象之间的兼容性得分。通过完全从原始数据中学习,训练有素的网络能够捕获受全局样式特征(如人体工程学和对象类别关系)影响的各种兼容性条件。所提出的深度估计器通常是鲁棒的,并且可以促进各种高级任务。我们首先展示其在对象收集组织中的应用。之后,我们展示了如何通过将成对样式估计集成到新颖的子模块公式中来实现室内场景合成的布局引导,样式一致的对象检索。我们的实验证明了所提出方法的可用性,其结果优于先前的研究,甚至可以与人类观察者的建议相提并论。

著录项

  • 来源
    《Computers & Graphics》 |2018年第8期|76-84|共9页
  • 作者单位

    State Key Laboratory of Virtual Reality Technology and Systems, Beihang University;

    State Key Laboratory of Virtual Reality Technology and Systems, Beihang University;

    State Key Laboratory of Virtual Reality Technology and Systems, Beihang University;

    State Key Laboratory of Virtual Reality Technology and Systems, Beihang University;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Style estimator; Deep neural network; Collection organization; Scene suggestion;

    机译:风格估计器;深度神经网络;馆藏组织;场景建议;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号