首页> 外文期刊>ACM Transactions on Graphics >Nonlinear Optimization Framework for Image-Based Modeling on Programmable Graphics Hardware
【24h】

Nonlinear Optimization Framework for Image-Based Modeling on Programmable Graphics Hardware

机译:可编程图形硬件上基于图像的非线性优化框架

获取原文
获取原文并翻译 | 示例

摘要

Graphics hardware is undergoing a change from fixed-function pipelines to more programmable organizations that resemble general purpose stream processors. In this paper, we show that certain general algorithms, not normally associated with computer graphics, can be mapped to such designs. Specifically, we cast nonlinear optimization as a data streaming process that is well matched to modern graphics processors. Our framework is particularly well suited for solving image-based modeling problems since it can be used to represent a large and diverse class of these problems using a common formulation. We successfully apply this approach to two distinct image-based modeling problems: light field mapping approximation and fitting the Lafortune model to spatial bidirectional reflectance distribution functions. Comparing the performance of the graphics hardware implementation to a CPU implementation, we show more than 5-fold improvement.
机译:图形硬件正经历着从固定功能管线向类似于通用流处理器的更多可编程组织的转变。在本文中,我们表明某些通常与计算机图形无关的通用算法可以映射到此类设计。具体来说,我们将非线性优化视为与现代图形处理器非常匹配的数据流处理过程。我们的框架特别适合解决基于图像的建模问题,因为它可以使用通用公式来表示这些问题的大类。我们成功地将此方法应用于两个基于图像的独特建模问题:光场映射近似和将Lafortune模型拟合到空间双向反射率分布函数。将图形硬件实现与CPU实现的性能进行比较,我们显示出5倍以上的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号