首页> 外文期刊>ACM Transactions on Graphics >Texture optimization for example-based synthesis
【24h】

Texture optimization for example-based synthesis

机译:基于示例的合成的纹理优化

获取原文
获取原文并翻译 | 示例

摘要

We present a novel technique for texture synthesis using optimization. We define a Markov Random Field (MRF)-based similarity metric for measuring the quality of synthesized texture with respect to a given input sample. This allows us to formulate the synthesis problem as minimization of an energy function, which is optimized using an Expectation Maximization (EM)-like algorithm. In contrast to most example-based techniques that do region-growing, ours is a joint optimization approach that progressively refines the entire texture. Additionally, our approach is ideally suited to allow for controllable synthesis of textures. Specifically, we demonstrate controllability by animating image textures using flow fields. We allow for general two-dimensional flow fields that may dynamically change over time. Applications of this technique include dynamic texturing of fluid animations and texture-based flow visualization.
机译:我们提出了一种使用优化的纹理合成新技术。我们定义了一个基于马尔可夫随机场(MRF)的相似性度量,用于相对于给定的输入样本测量合成纹理的质量。这使我们可以将综合问题表述为能量函数的最小化,这是使用类似于期望最大化(EM)的算法进行优化的。与大多数执行区域增长的基于示例的技术相反,我们的技术是一种联合优化方法,可逐步完善整个纹理。此外,我们的方法非常适合允许纹理的可控合成。具体而言,我们通过使用流场对图像纹理进行动画处理来演示可控制性。我们允许可能随时间动态变化的一般二维流场。该技术的应用包括流体动画的动态纹理化和基于纹理的流可视化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号