首页> 外文期刊>ACM Transactions on Graphics >Automatic determination of facial muscle activations from sparse motion capture marker data
【24h】

Automatic determination of facial muscle activations from sparse motion capture marker data

机译:根据稀疏的运动捕捉标记数据自动确定面部肌肉的激活

获取原文
获取原文并翻译 | 示例

摘要

We built an anatomically accurate model of facial musculature, passive tissue and underlying skeletal structure using volumetric data acquired from a living male subject. The tissues are endowed with a highly nonlinear constitutive model including controllable anisotropic muscle activations based on fiber directions. Detailed models of this sort can be difficult to animate requiring complex coordinated stimulation of the underlying musculature. We propose a solution to this problem automatically determining muscle activations that track a sparse set of surface landmarks, e.g. acquired from motion capture marker data. Since the resulting animation is obtained via a three dimensional nonlinear finite element method, we obtain visually plausible and anatomically correct deformations with spatial and temporal coherence that provides robustness against outliers in the motion capture data. Moreover, the obtained muscle activations can be used in a robust simulation framework including contact and collision of the face with external objects.
机译:我们使用从活着的男性受试者获得的体积数据,建立了面部肌肉,被动组织和潜在骨骼结构的解剖学精确模型。组织具有高度非线性的本构模型,包括基于纤维方向的可控各向异性肌肉激活。此类详细模型可能难以动画处理,需要对底层肌肉组织进行复杂的协调刺激。我们提出了一个针对该问题的解决方案,可自动确定跟踪稀疏的一组表面标志的肌肉激活,例如从运动捕获标记数据中获取。由于生成的动画是通过三维非线性有限元方法获得的,因此我们获得了在视觉上合理且在解剖上正确的变形,并具有时空连贯性,从而提供了对运动捕捉数据中异常值的鲁棒性。而且,所获得的肌肉激活可以用于鲁棒的模拟框架中,包括面部与外部物体的接触和碰撞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号