首页> 外文期刊>ACM Transactions on Graphics >Real-time GPU rendering of piecewise algebraic surfaces
【24h】

Real-time GPU rendering of piecewise algebraic surfaces

机译:分段代数曲面的实时GPU渲染

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of real-time GPU rendering of algebraic surfaces defined by Bezier tetrahedra. These surfaces are rendered directly in terms of their polynomial representations, as opposed to a collection of approximating triangles, thereby eliminating tessellation artifacts and reducing memory usage. A key step in such algorithms is the computation of univariate polynomial coefficients at each pixel; real roots of this polynomial correspond to possibly visible points on the surface. Our approach leverages the strengths of GPU computation and is highly efficient. Furthermore, we compute these coefficients in Bernstein form to maximize the stability of root finding, and to provide shader instances with an early exit test based on the sign of these coefficients. Solving for roots is done using analytic techniques that map well to a SIMD architecture, but limits us to fourth order algebraic surfaces. The general framework could be extended to higher order with numerical root finding.
机译:我们考虑由Bezier四面体定义的代数曲面的实时GPU渲染问题。这些表面是根据其多项式表示直接呈现的,而不是近似三角形的集合,从而消除了棋盘形伪像并减少了内存使用。这种算法的关键步骤是计算每个像素的单变量多项式系数。该多项式的实根对应于表面上可能可见的点。我们的方法利用了GPU计算的优势,并且效率很高。此外,我们以伯恩斯坦形式计算这些系数,以最大程度地提高寻根的稳定性,并基于这些系数的符号为着色器实例提供早期退出测试。根的求解是使用可以很好地映射到SIMD架构的分析技术完成的,但是将我们限制在四阶代数曲面上。通用框架可以通过数字根查找扩展到更高阶。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号