首页> 外文期刊>ACM Transactions on Graphics >Motion Reconstruction Using Sparse Accelerometer Data
【24h】

Motion Reconstruction Using Sparse Accelerometer Data

机译:使用稀疏加速度计数据进行运动重建

获取原文
获取原文并翻译 | 示例

摘要

The development of methods and tools for the generation of visually appealing motion sequences using prerecorded motion capture data has become an important research area in computer animation. In particular, data-driven approaches have been used for reconstructing high-dimensional motion sequences from low-dimensional control signals. In this article, we contribute to this strand of research by introducing a novel framework for generating full-body animations controlled by only four 3D accelerometers that are attached to the extremities of a human actor. Our approach relies on a knowledge base that consists of a large number of motion clips obtained from marker-based motion capturing. Based on the sparse accelerometer input a cross-domain retrieval procedure is applied to build up a lazy neighborhood graph in an online fashion. This graph structure points to suitable motion fragments in the knowledge base, which are then used in the reconstruction step. Supported by a kd-tree index structure, our procedure scales to even large datasets consisting of millions of frames. Our combined approach allows for reconstructing visually plausible continuous motion streams, even in the presence of moderate tempo variations which may not be directly reflected by the given knowledge base.
机译:使用预先记录的运动捕捉数据来产生视觉吸引力的运动序列的方法和工具的开发已经成为计算机动画中的重要研究领域。特别地,已经使用数据驱动的方法从低维控制信号重建高维运动序列。在本文中,我们通过引入一种新颖的框架来生成全身动画,而这种动画仅由四个附加在人类演员肢体上的3D加速度计控制,从而为这一研究工作做出了贡献。我们的方法依赖于一个知识库,该知识库由从基于标记的运动捕获中获得的大量运动剪辑组成。基于稀疏加速度计输入,应用跨域检索过程以在线方式构建懒惰邻域图。该图结构指向知识库中合适的运动片段,然后将其用于重建步骤。在kd-tree索引结构的支持下,我们的过程甚至可以扩展到包含数百万个帧的大型数据集。我们的组合方法允许重建视觉上合理的连续运动流,即使存在适度的速度变化也可能无法直接由给定的知识库反映出来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号