首页> 外文期刊>ACM Transactions on Graphics >Semantic Decomposition and Reconstruction of Residential Scenes from LiDAR Data
【24h】

Semantic Decomposition and Reconstruction of Residential Scenes from LiDAR Data

机译:LiDAR数据对居住场景的语义分解与重构

获取原文
获取原文并翻译 | 示例

摘要

We present a complete system to semantically decompose and reconstruct 3D models from point clouds. Different than previous urban modeling approaches, our system is designed for residential scenes, which consist of mainly low-rise buildings that do not exhibit the regularity and repetitiveness as high-rise buildings in downtown areas. Our system first automatically labels the input into distinctive categories using supervised learning techniques. Based on the semantic labels, objects in different categories are reconstructed with domain-specific knowledge. In particular, we present a novel building modeling scheme that aims to decompose and fit the building point cloud into basic blocks that are blockwise symmetric and convex. This building representation and its reconstruction algorithm are flexible, efficient, and robust to missing data. We demonstrate the effectiveness of our system on various datasets and compare our building modeling scheme with other state-of-the-art reconstruction algorithms to show its advantage in terms of both quality and speed.
机译:我们提出了一个完整的系统,可以从点云中语义分解和重建3D模型。与以前的城市建模方法不同,我们的系统是针对住宅场景设计的,主要由低层建筑组成,这些低层建筑不像市区的高层建筑那样具有规律性和重复性。我们的系统首先使用监督学习技术将输入内容自动标记为不同的类别。基于语义标签,可以使用特定领域的知识来重构不同类别的对象。特别是,我们提出了一种新颖的建筑建模方案,旨在将建筑点云分解并拟合为块状对称和凸出的基本块。该建筑物表示及其重建算法对丢失的数据具有灵活性,效率和鲁棒性。我们展示了我们的系统在各种数据集上的有效性,并将我们的建筑建模方案与其他最新的重建算法进行了比较,以显示其在质量和速度方面的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号