首页> 外文期刊>ACM Transactions on Graphics >DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling
【24h】

DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling

机译:DeepSketch2Face:基于深度学习的3D人脸和漫画建模素描系统

获取原文
获取原文并翻译 | 示例

摘要

Face modeling has been paid much attention in the field of visual computing. There exist many scenarios, including cartoon characters, avatars for social media, 3D face caricatures as well as face-related art and design, where low-cost interactive face modeling is a popular approach especially among amateur users. In this paper, we propose a deep learning based sketching system for 3D face and caricature modeling. This system has a labor-efficient sketching interface, that allows the user to draw freehand imprecise yet expressive 2D lines representing the contours of facial features. A novel CNN based deep regression network is designed for inferring 3D face models from 2D sketches. Our network fuses both CNN and shape based features of the input sketch, and has two independent branches of fully connected layers generating independent subsets of coefficients for a bilinear face representation. Our system also supports gesture based interactions for users to further manipulate initial face models. Both user studies and numerical results indicate that our sketching system can help users create face models quickly and effectively. A significantly expanded face database with diverse identities, expressions and levels of exaggeration is constructed to promote further research and evaluation of face modeling techniques.
机译:在视觉计算领域中,人脸建模一直备受关注。存在许多场景,包括卡通人物,社交媒体的化身,3D面部漫画以及与面部相关的艺术和设计,其中低成本的交互式面部建模是一种流行的方法,尤其是在业余用户中。在本文中,我们提出了一种基于深度学习的3D人脸和漫画建模草图系统。该系统具有省力的素描界面,允许用户绘制徒手的不精确但富有表现力的2D线,这些线代表面部特征的轮廓。一种新颖的基于CNN的深度回归网络被设计用于从2D草图中推断3D人脸模型。我们的网络融合了CNN和基于输入草图的基于形状的特征,并具有两个完全相连的层的独立分支,生成了双线性人脸表示的系数的独立子集。我们的系统还支持基于手势的交互,以便用户进一步操纵初始面部模型。用户研究和数值结果均表明,我们的草绘系统可以帮助用户快速有效地创建面部模型。构建了具有多种身份,表情和夸张程度的,大大扩展的人脸数据库,以促进人脸建模技术的进一步研究和评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号