首页> 外文期刊>IEEE transactions on visualization and computer graphics >DeepSketchHair: Deep Sketch-Based 3D Hair Modeling
【24h】

DeepSketchHair: Deep Sketch-Based 3D Hair Modeling

机译:Deepsketchhair:基于深刻的素描3D发型

获取原文
获取原文并翻译 | 示例

摘要

We present DeepSketchHair, a deep learning based tool for modeling of 3D hair from 2D sketches. Given a 3D bust model as reference, our sketching system takes as input a user-drawn sketch (consisting of hair contour and a few strokes indicating the hair growing direction within a hair region), and automatically generates a 3D hair model, matching the input sketch. The key enablers of our system are three carefully designed neural networks, namely, S2ONet, which converts an input sketch to a dense 2D hair orientation field; O2VNet, which maps the 2D orientation field to a 3D vector field; and V2VNet, which updates the 3D vector field with respect to the new sketches, enabling hair editing with additional sketches in new views. All the three networks are trained with synthetic data generated from a 3D hairstyle database. We demonstrate the effectiveness and expressiveness of our tool using a variety of hairstyles and also compare our method with prior art.
机译:我们展示了Deepsketchhair,这是一种深深的学习工具,用于从2D草图建模3D头发。 给定3D胸部模型作为参考,我们的草图系统用作输入用户绘制的草图(由头发轮廓和一些表明毛发区域内的头发生长方向的行程),并自动生成3D毛发模型,匹配输入 草图。 我们系统的关键推动者是三个精心设计的神经网络,即S2ONET,它将输入草图转换为密集的2D定向领域; O2VNET,将2D定向字段映射到3D矢量字段; 和V2VNET,它更新了与新草图相对于新草图的3D矢量字段,使得在新视图中具有额外草图的头发编辑。 所有三个网络均接受从3D发型数据库生成的合成数据培训。 我们展示了使用各种发型的工具的有效性和表现性,并与现有技术进行比较我们的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号