首页> 外文期刊>ACM Transactions on Graphics >GRASS: Generative Recursive Autoencoders for Shape Structures
【24h】

GRASS: Generative Recursive Autoencoders for Shape Structures

机译:GRASS:形状结构的生成递归自动编码器

获取原文
获取原文并翻译 | 示例

摘要

We introduce a novel neural network architecture for encoding and synthesis of 3D shapes, particularly their structures. Our key insight is that 3D shapes are effectively characterized by their hierarchical organization of parts, which reflects fundamental intra-shape relationships such as adjacency and symmetry. We develop a recursive neural net (RvNN) based autoencoder to map a flat, unlabeled, arbitrary part layout to a compact code. The code effectively captures hierarchical structures of man-made 3D objects of varying structural complexities despite being fixed-dimensional: an associated decoder maps a code back to a full hierarchy. The learned bidirectional mapping is further tuned using an adversarial setup to yield a generative model of plausible structures, from which novel structures can be sampled. Finally, our structure synthesis framework is augmented by a second trained module that produces fine-grained part geometry, conditioned on global and local structural context, leading to a full generative pipeline for 3D shapes.We demonstrate that without supervision, our network learns meaningful structural hierarchies adhering to perceptual grouping principles, produces compact codes which enable applications such as shape classification and partial matching, and supports shape synthesis and interpolation with significant variations in topology and geometry.
机译:我们介绍了一种新颖的神经网络架构,用于3D形状(尤其是其结构)的编码和合成。我们的主要见识在于,3D形状通过零件的层次结构有效地表征,这反映了基本的内部形状关系,例如相邻性和对称性。我们开发了基于递归神经网络(RvNN)的自动编码器,以将平坦的,未标记的任意零件布局映射到紧凑的代码。该代码有效地捕获了结构复杂度不同的人造3D对象的层次结构,尽管它们是固定尺寸的:相关的解码器将代码映射回完整的层次结构。使用对抗性设置进一步调整学习的双向映射,以生成合理结构的生成模型,从中可以采样新结构。最后,我们的结构综合框架得到了第二个训练有素的模块的增强,该模块产生了细粒度的零件几何形状,并以全局和局部结构为条件,从而形成了完整的3D形状生成管线。遵循感知分组原则的层次结构,产生紧凑的代码,可实现形状分类和部分匹配之类的应用,并支持形状合成和插值,并且拓扑和几何形状有显着变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号