首页> 外文期刊>ACM Transactions on Graphics >GRAINS: Generative Recursive Autoencoders for INdoor Scenes
【24h】

GRAINS: Generative Recursive Autoencoders for INdoor Scenes

机译:谷物:用于室内场景的生成式递归自动编码器

获取原文
获取原文并翻译 | 示例

摘要

We present a generative neural network that enables us to generate plausible 3D indoor scenes in large quantities and varieties, easily and highly efficiently. Our key observation is that indoor scene structures are inherently hierarchical. Hence, our network is not convolutional; it is a recursive neural network, or RvNN. Using a dataset of annotated scene hierarchies, we train a variational recursive autoencoder, or RvNN-VAE, which performs scene object grouping during its encoding phase and scene generation during decoding. Specifically, a set of encoders are recursively applied to group 3D objects based on support, surround, and co-occurrence relations in a scene, encoding information about objects' spatial properties, semantics, and relative positioning with respect to other objects in the hierarchy. By training a variational autoencoder (VAE), the resulting fixed-length codes roughly follow a Gaussian distribution. A novel 3D scene can be generated hierarchically by the decoder from a randomly sampled code from the learned distribution. We coin our method GRAINS, for Generative Recursive Autoencoders for INdoor Scenes. We demonstrate the capability of GRAINS to generate plausible and diverse 3D indoor scenes and compare with existing methods for 3D scene synthesis. We show applications of GRAINS including 3D scene modeling from 2D layouts, scene editing, and semantic scene segmentation via PointNet whose performance is boosted by the large quantity and variety of 3D scenes generated by our method.
机译:我们提出了一种生成神经网络,使我们能够轻松高效地生成大量,种类繁多的合理的3D室内场景。我们的主要观察结果是室内场景结构本质上是分层的。因此,我们的网络不是卷积的。它是一个递归神经网络或RvNN。使用带注释的场景层次结构的数据集,我们训练了一种变分递归自动编码器,即RvNN-VAE,它在编码阶段执行场景对象分组,并在解码期间执行场景生成。具体而言,将一组编码器基于场景中的支持,环绕和同现关系递归应用于3D对象组,对有关对象的空间属性,语义以及相对于层次结构中其他对象的相对位置的信息进行编码。通过训练可变自动编码器(VAE),所得固定长度代码大致遵循高斯分布。解码器可以从学习到的分布中随机采样的代码中分层生成新颖的3D场景。我们为室内场景的生成递归自动编码器开发了GRAINS方法。我们演示了GRAINS生成合理且多样的3D室内场景的能力,并与3D场景合成的现有方法进行了比较。我们展示了GRAINS的应用,包括2D布局的3D场景建模,场景编辑以及通过PointNet进行语义场景分割,其性能因我们的方法生成的大量3D场景而得到提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号