首页> 外文期刊>ACM transactions on database systems >A Game-theoretic Approach to Data Interaction
【24h】

A Game-theoretic Approach to Data Interaction

机译:数据交互的游戏理论方法

获取原文
获取原文并翻译 | 示例

摘要

As most users do not precisely know the structure and/or the content of databases, their queries do not exactly reflect their information needs. The database management system (DBMS) may interact with users and use their feedback on the returned results to learn the information needs behind their queries. Current query interfaces assume that users do not learn and modify the way they express their information needs in the form of queries during their interaction with the DBMS. Using a real-world interaction workload, we show that users learn and modify how to express their information needs during their interactions with the DBMS and their learning is accurately modeled by a well-known reinforcement learning mechanism. As current data interaction systems assume that users do not modify their strategies, they cannot discover the information needs behind users' queries effectively. We model the interaction between the user and the DBMS as a game with identical interest between two rational agents whose goal is to establish a common language for representing information needs in the form of queries. We propose a reinforcement learning method that learns and answers the information needs behind queries and adapts to the changes in users' strategies and proves that it improves the effectiveness of answering queries, stochastically speaking. We propose two efficient implementations of this method over large relational databases. Our extensive empirical studies over real-world query workloads indicate that our algorithms are efficient and effective.
机译:由于大多数用户不准确地了解数据库的结构和/或内容,因此他们的查询并不完全反映其信息需求。数据库管理系统(DBMS)可以与用户交互并使用其对返回结果的反馈,以了解其查询后面的信息需求。当前查询接口假定用户在与DBMS交互期间,用户不学习和修改它们以查询的形式表达信息所需的方式。使用真实世界的互动工作量,我们显示用户在与DBMS的交互期间学习和修改如何表达他们的信息需求,并且他们的学习是由着名的加强学习机制准确建模的。由于当前数据交互系统假设用户不修改其策略,因此无法有效地发现用户背后的信息需求。我们将用户和DBMS之间的交互模型为具有相同兴趣的游戏,其目标是建立用于代表查询的形式的用于表示信息需求的公共语言。我们提出了一种加强学习方法,了解并回答信息需要的信息需求,并适应用户策略的变化,并证明它提高了回答查询的有效性,随机讲话。我们在大型关系数据库中提出了两个方法的有效实现。我们对现实世界查询工作负载的广泛实证研究表明我们的算法是高效且有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号