首页> 外文期刊>ACM transactions on database systems >Exact Model Counting of Query Expressions: Limitations of Propositional Methods
【24h】

Exact Model Counting of Query Expressions: Limitations of Propositional Methods

机译:查询表达式的精确模型计数:命题方法的局限性

获取原文
获取原文并翻译 | 示例

摘要

We prove exponential lower bounds on the running time of the state-of-the-art exact model counting algorithms-algorithms for exactly computing the number of satisfying assignments, or the satisfying probability, of Boolean formulas. These algorithms can be seen, either directly or indirectly, as building Decision-Decomposable Negation Normal Form (decision-DNNF) representations of the input Boolean formulas. Decision-DNNFs are a special case of d-DNNFs where d stands for deterministic. We show that any knowledge compilation representations from a class (called DLDDs in this article) that contain decisionDNNFs can be converted into equivalent Free Binary Decision Diagrams (FBDDs), also known as Read-Once Branching Programs, with only a quasi-polynomial increase in representation size. Leveraging known exponential lower bounds for FBDDs, we then obtain similar exponential lower bounds for decision-DNNFs, which imply exponential lower bounds for model-counting algorithms. We also separate the power of decisionDNNFs from d-DNNFs and a generalization of decision-DNNFs known as AND-FBDDs. We then prove new lower bounds for FBDDs that yield exponential lower bounds on the running time of these exact model counters when applied to the problem of query evaluation in tuple-independent probabilistic databases-computing the probability of an answer to a query given independent probabilities of the individual tuples in a database instance. This approach to the query evaluation problem, in which one first obtains the lineage for the query and database instance as a Boolean formula and then performs weighted model counting on the lineage, is known as grounded inference. A second approach, known as lifted inference or extensional query evaluation, exploits the high-level structure of the query as a first-order formula. Although it has been widely believed that lifted inference is strictly more powerful than grounded inference on the lineage alone, no formal separation has previously been shown for query evaluation. In this article, we show such a formal separation for the first time. In particular, we exhibit a family of database queries for which polynomial-time extensional query evaluation techniques were previously known but for which query evaluation via grounded inference using the state-of-the-art exact model counters requires exponential time.
机译:我们证明了用于精确计算布尔公式的满意分配数或满意概率的最新精确模型计数算法-算法的运行时间的指数下界。这些算法可以直接或间接地视为构建输入布尔公式的决策可分解否定范式(decision-DNNF)表示形式。决策DNNF是d-DNNF的特例,其中d表示确定性。我们表明,包含决策DNNF的类中的任何知识编译表示形式(在本文中称为DLDD)都可以转换为等效的自由二进制决策图(FBDD),也称为Read-Once分支程序,其中仅准多项式增加表示大小。利用已知的FBDD指数下限,我们可以为决策DNNF获得相似的指数下限,这意味着模型计数算法的指数下限。我们还将决策DNNF的功能与d-DNNF分开,并将决策DNNF的泛化称为AND-FBDD。然后,我们证明了FBDD的新下界,当将它们应用于在不依赖元组的概率数据库中的查询评估问题时,这些精确模型计数器的运行时间将产生指数下界-在给定独立概率的情况下,计算查询答案的概率数据库实例中的各个元组。这种解决查询评估问题的方法,即首先获取查询和数据库实例的谱系作为布尔公式,然后对该谱系进行加权模型计数,这种方法被称为基础推理。第二种方法,称为提升推理或扩展查询评估,将查询的高级结构用作一阶公式。尽管人们普遍认为,在单独的谱系上,提升推理的确比基于推理的推理更强大,但以前尚未显示用于查询评估的正式分离方法。在本文中,我们首次展示了这种形式上的分离。特别是,我们展示了一系列数据库查询,这些数据库查询以前都知道多项式时间扩展查询评估技术,但对于使用最新的精确模型计数器通过基础推理进行的查询评估,则需要指数时间。

著录项

  • 来源
    《ACM transactions on database systems》 |2017年第1期|1.1-1.46|共46页
  • 作者单位

    Univ Washington, Dept Comp Sci & Engn, Box 352350, Seattle, WA 98195 USA;

    MIT, Dept Elect Engn & Comp Sci, 32 Vassar St, Cambridge, MA 02141 USA;

    Duke Univ, Dept Comp Sci, Campus Box 90129,308 Res Dr, Durham, NC 27708 USA;

    Univ Washington, Dept Comp Sci & Engn, Box 352350, Seattle, WA 98195 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号