首页> 外文期刊>ACM Transactions on Computer-Human Interaction >Predicting User Performance and Learning in Human-Computer Interaction with the Herbal Compiler
【24h】

Predicting User Performance and Learning in Human-Computer Interaction with the Herbal Compiler

机译:预测用户性能并通过Herbal Compiler在人机交互中学习

获取原文
获取原文并翻译 | 示例

摘要

We report a way to build a series of GOMS-like cognitive user models representing a range of performance at different stages of learning. We use a spreadsheet task across multiple sessions as an example task; it takes about 20-30 min. to perform. The models were created in ACT-R using a compiler. The novice model has 29 rules and 1,152 declarative memory task elements (chunks) it learns to create procedural knowledge to perform the task. The expert model has 617 rules and 614 task chunks (that it does not use) and 538 command string chunks it gets slightly faster through limited declarative learning of the command strings and some further production compilation; there are a range of intermediate models. These models were tested against aggregate and individual human learning data, confirming the models' predictions. This work suggests that user models can be created that learn like users while doing the task.
机译:我们报告了一种构建一系列类似于GOMS的认知用户模型的方法,这些模型代表了学习不同阶段的一系列表现。我们以跨多个会话的电子表格任务为例。大约需要20-30分钟。去表演。这些模型是使用编译器在ACT-R中创建的。新手模型具有29条规则和1,152个声明性记忆任务元素(块),可学习创建过程知识来执行任务。专家模型具有617条规则和614个任务块(不使用)和538个命令字符串块,通过对命令字符串的有限声明式学习和进一步的生产编译,它的运行速度会稍有提高。有一系列中间模型。这些模型针对汇总的个人学习数据进行了测试,证实了模型的预测。这项工作表明可以创建在执行任务时像用户一样学习的用户模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号