首页> 外文期刊>ACM Transactions on Computer-Human Interaction >Local Decision Pitfalls in Interactive Machine Learning: An Investigation into Feature Selection in Sentiment Analysis
【24h】

Local Decision Pitfalls in Interactive Machine Learning: An Investigation into Feature Selection in Sentiment Analysis

机译:交互式机器学习中的局部决策陷阱:情感分析中的特征选择研究

获取原文
获取原文并翻译 | 示例

摘要

Tools for Interactive Machine Learning (IML) enable end users to update models in a "rapid, focused, and incremental"-yet local-manner. In this work, we study the question of local decision making in an IML context around feature selection for a sentiment classification task. Specifically, we characterize the utility of interactive feature selection through a combination of human-subjects experiments and computational simulations. We find that, in expectation, interactive modification fails to improve model performance and may hamper generalization due to overfitting. We examine how these trends are affected by the dataset, learning algorithm, and the training set size. Across these factors we observe consistent generalization issues. Our results suggest that rapid iterations with IML systems can be dangerous if they encourage local actions divorced from global context, degrading overall model performance. We conclude by discussing the implications of our feature selection results to the broader area of IML systems and research.
机译:交互式机器学习(IML)工具使最终用户能够以“快速,集中和增量”的本地方式更新模型。在这项工作中,我们研究了IML上下文中围绕情感分类任务的特征选择的本地决策问题。具体来说,我们通过结合人类受试者实验和计算模拟来表征交互式特征选择的实用性。我们发现,出乎意料的是,交互式修改无法改善模型性能,并且可能会因过度拟合而妨碍泛化。我们研究了这些趋势如何受到数据集,学习算法和训练集大小的影响。在这些因素中,我们观察到一致的泛化问题。我们的结果表明,如果IML系统鼓励局部动作与全局环境分离,从而降低整体模型性能,则IML系统的快速迭代可能很危险。最后,我们讨论了特征选择结果对IML系统和研究领域的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号