首页> 外文期刊>ACM Transactions on Computational Theory >Pebbling, Entropy, and Branching Program Size Lower Bounds
【24h】

Pebbling, Entropy, and Branching Program Size Lower Bounds

机译:Pebbling,熵和分支程序大小的下界

获取原文
获取原文并翻译 | 示例

摘要

We contribute to the program of proving lower bounds on the size of branching programs solving the Tree Evaluation Problem introduced by Cook et al. [2012]. Proving a superpolynomial lower bound for the size of nondeterministic thrifty branching programs would be an important step toward separating NL from P using the tree evaluation problem. First, we show that Read-Once Nondeterministic Thrifty BPs are equivalent to whole black-white pebbling algorithms, thus showing a tight lower bound (ignoring polynomial factors) for this model. We then introduce a weaker restriction of nondeterministic thrifty branching programs called Bitwise Independence. The best known [Cook et al. 2012] nondeterministic thrifty branching programs (of size O(k~(h/2+1))) for the tree evaluation problem are Bitwise Independent. As our main result, we show that any Bitwise Independent Nondeterministic Thrifty Branching Program solvi ng BT_2(h, k) must have at least (k/2)~(h/2) states. Prior to this work, lower bounds were known for nondeterministic thrifty branching programs only for fixed heights h = 2, 3,4 [Cook et al. 2012]. We prove our results by associating a fractional black-white pebbling strategy with any bitwise independent nondeterministic thrifty branching program solving the Tree Evaluation Problem. Such a connection was not known previously, even for fixed heights. Our main technique is the entropy method introduced by Jukna and Zak [2001] originally in the context of proving lower bounds for read-once branching programs. We also show that the previous lower bounds known [Cook et al. 2012] for deterministic branching programs for the Tree Evaluation Problem can be obtained using this approach. Using this method, we also show tight lower bounds for any k-way deterministic branching program solving the Tree Evaluation Problem when the instances are restricted to have the same group operation in all internal nodes.
机译:我们为证明分支程序大小的下限的程序做出了贡献,以解决Cook等人提出的“树评估问题”。 [2012]。为不确定的节俭分支程序的大小证明一个超多项式下界将是使用树评估问题将NL与P分离的重要一步。首先,我们证明了Read-Once非确定性节俭BP等效于整个黑白揉算法,因此显示了该模型的严格下限(忽略多项式因子)。然后,我们引入了一种较弱的对不确定性节俭分支程序的限制,该程序称为按位独立性。最著名的[库克等。 2012]树评估问题的不确定性节流分支程序(大小为O(k〜(h / 2 + 1)))是按位独立的。作为我们的主要结果,我们证明解决BT_2(h,k)的任何按位独立的不确定性节俭分支程序必须至少具有(k / 2)〜(h / 2)个状态。在这项工作之前,对于不确定的节俭分支程序,仅在固定高度h = 2、3、4时才知道下界[Cook等。 2012]。我们通过将分数黑白打水策略与解决树评估问题的任何按位独立的不确定性节俭分支程序相关联来证明我们的结果。即使对于固定高度,这种连接以前也不为人所知。我们的主要技术是Jukna和Zak [2001]引入的熵方法,最初是在证明一次分支程序的下界的情况下引入的。我们还显示了先前的下界已知[Cook等。 [2012]确定性分支计划的树评估问题可以使用这种方法获得。使用这种方法,当实例被限制在所有内部节点中具有相同的组操作时,我们还为解决树评估问题的任何k向确定性分支程序显示了严格的下界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号