首页> 外文期刊>ACM transactions on computation theory >On the Power of Amortization in Secret Sharing: d-Uniform Secret Sharing and CDS with Constant Information Rate
【24h】

On the Power of Amortization in Secret Sharing: d-Uniform Secret Sharing and CDS with Constant Information Rate

机译:关于秘密共享中摊销的力量:D-统一秘密共享和CD,持续信息率

获取原文
获取原文并翻译 | 示例

摘要

Consider the following secret-sharing problem: A file s should be distributed between n servers such that (d - l)-subsets cannot recover the file, (d + l)-subsets can recover the file, and d-subsets should be able to recover s if and only if they appear in some pre-defined list L. The goal is to minimize the information ratio- that is, the number of bits stored on a server per each bit of the secret. We show that for any constant d and any pre-defined list L. if the file is sufficiently long (exponential in n ), the problem can be solved with a constant asymptotic information ratio of c_d that does not grow with the number of servers n. This result is based on a new construction of d-party conditional disclosure of secrets for arbitrary predicates over an n-size domain in which each party communicates at most four bits per secret bit. In both settings, previous results achieved a non-constant information ratio that grows asymptotically with n, even for the simpler special case of d = 2. Moreover, our constructions yield the first example of an access structure whose amortized information ratio is constant, whereas its best-known non-amortized information ratio is sub-exponential, thus providing a unique evidence for the potential power of amortization in the context of secret sharing. Our main result applies to exponentially long secrets, and so it should be mainly viewed as a barrier against amortizable lower-bound techniques. We also show that in some natural simple cases (e.g., low-degree predicates), amortization kicks in even for quasi-polynomially long secrets. Finally, we prove some limited lower bounds and point out some limitations of existing lower-bound techniques.
机译:考虑以下秘密共享问题:将在N服务器之间分发文件s,使得(d-l)-subsets无法恢复文件,(d + l)-subsets可以恢复文件,并且D-subet应该能够如果它们出现在某些预定义的列表L中,则恢复S r。目标是最小化信息比率 - 也就是说,存储在秘密的每位的服务器上的位数。我们表明,对于任何常数d和任何预定义的列表l。如果文件足够长(n indiential在n),则可以用c_d的常数渐近信息比来解决问题,该信息比不会与服务器数量的数量增长。该结果基于对N型域的任意谓词的D党条件披露的新建,其中每个方每秘密位的大多数四位通信。在两个设置中,先前的结果实现了一种非恒定信息比,即使对于D = 2的更简单的特殊情况,即使对于D = 2的更简单特殊情况,也可以产生渐近的特殊情况。其最知名的非摊销信息比率是子指数,从而为秘密共享的背景下提供差异的潜在权力的唯一证据。我们的主要结果适用于指数较长的秘密,因此它应该主要被视为防止摊销的较低束缚技术的障碍。我们还表明,在一些自然的简单情况下(例如,低度谓词),即使对于准多项式长的秘密,摊销踢球。最后,我们证明了一些有限的下限,并指出了现有的较低界技术的一些限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号