首页> 外文期刊>ACM transactions on computational logic >Splitting an Operator: Algebraic Modularity Results for Logics with Fixpoint Semantics
【24h】

Splitting an Operator: Algebraic Modularity Results for Logics with Fixpoint Semantics

机译:拆分运算符:具有定点语义的逻辑的代数模块化结果

获取原文
获取原文并翻译 | 示例

摘要

It is well known that, under certain conditions, it is possible to split logic programs under stable model semantics, that is, to divide such a program into a number of different "levels", such that the models of the entire program can be constructed by incrementally constructing models for each level. Similar results exist for other nonmonotonic formalisms, such as auto-epistemic logic and default logic. In this work, we present a general, algebraic splitting theory for logics with a fixpoint semantics. Together with the framework of approximation theory, a general fixpoint theory for arbitrary operators, this gives us a uniform and powerful way of deriving splitting results for each logic with a fixpoint semantics. We demonstrate the usefulness of these results, by generalizing existing results for logic programming, auto-epistemic logic and default logic.
机译:众所周知,在某些条件下,可以在稳定的模型语义下分割逻辑程序,即,将这样的程序划分为多个不同的“级别”,从而可以构建整个程序的模型。通过逐步构建每个级别的模型。对于其他非单调形式主义,例如自流行逻辑和默认逻辑,也存在类似的结果。在这项工作中,我们提出了具有定点语义的逻辑的通用代数分裂理论。结合逼近理论的框架(一种适用于任意运算符的通用定点理论),这为我们提供了一种统一而强大的方法,可以使用定点语义来推导每个逻辑的拆分结果。通过概括逻辑编程,自动流行病逻辑和默认逻辑的现有结果,我们证明了这些结果的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号