首页> 外文期刊>ACM transactions on computational logic >Logical Relations for a Logical Framework
【24h】

Logical Relations for a Logical Framework

机译:逻辑框架的逻辑关系

获取原文
获取原文并翻译 | 示例

摘要

Logical relations are a central concept used to study various higher-order type theories and occur frequently in the proofs of a wide variety of meta-theorems. Besides extending the logical relation principle to more general languages, an important research question has been how to represent and thus verify logical relation arguments in logical frameworks. We formulate a theory of logical relations for Dependent Type Theory (DTT) with β η-equality which guarantees that any valid logical relation satisfies the Basic Lemma. Our definition is syntactic and reflective in the sense that a relation at a type is represented as a DTT type family but also permits expressing certain semantic definitions. We use the Edinburgh Logical Framework (LF) incarnation of DTT and implement our notion of logical relations in the type-checker Twelf. This enables us to formalize and mechanically decide the validity of logical relation arguments. Furthermore, our implementation includes a module system so that logical relations can be built modularly. We validate our approach by formalizing and verifying several syntactic and semantic meta-theorems in Twelf. Moreover, we show how object languages encoded in DTT can inherit a notion of logical relation from the logical framework.
机译:逻辑关系是用于研究各种高阶类型理论的中心概念,并且经常出现在各种元定理的证明中。除了将逻辑关系原理扩展到更通用的语言之外,一个重要的研究问题是如何在逻辑框架中表示和验证逻辑关系参数。我们为具有βη-等式的从属类型理论(DTT)制定了一种逻辑关系理论,该理论保证任何有效的逻辑关系都满足基本引理。我们的定义在语法上是反映性的,在某种意义上,类型的关系表示为DTT类型族,但也允许表达某些语义定义。我们使用DTT的爱丁堡逻辑框架(LF)的形式,并在类型检查器Twelf中实现我们的逻辑关系概念。这使我们能够形式化并机械地确定逻辑关系参数的有效性。此外,我们的实现包括一个模块系统,以便可以模块化地构建逻辑关系。我们通过形式化和验证Twelf中的几个句法和语义元定理来验证我们的方法。此外,我们展示了用DTT编码的对象语言如何能够从逻辑框架继承逻辑关系的概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号