首页> 外文期刊>ACM transactions on autonomous and adaptive systems >e-Sampling: Event-Sensitive Autonomous Adaptive Sensing and Low-Cost Monitoring in Networked Sensing Systems
【24h】

e-Sampling: Event-Sensitive Autonomous Adaptive Sensing and Low-Cost Monitoring in Networked Sensing Systems

机译:电子采样:网络传感系统中的事件敏感型自主自适应传感和低成本监控

获取原文
获取原文并翻译 | 示例

摘要

; Sampling rate adaptation is a critical issue in many resource-constrained networked systems, including Wireless Sensor Networks (WSNs). Existing algorithms are primarily employed to detect events such as objects or physical changes at a high, low, or fixed frequency sampling usually adapted by a central unit or a sink, therefore requiring additional resource usage. Additionally, this algorithm potentially makes a network unable to capture a dynamic change or event of interest, which therefore affects monitoring quality. This article studies the problem of a fully autonomous adaptive sampling regarding the presence of a change or event. We propose a novel scheme, termed "event-sensitive adaptive sampling and low-cost monitoring (e-Sampling)" by addressing the problem in two stages, which leads to reduced resource usage (e.g., energy, radio bandwidth). First, e-Sampling provides the embedded algorithm to adaptive sampling that automatically switches between high- and low-frequency intervals to reduce the resource usage, while minimizing false negative detections. Second, by analyzing the frequency content, e-Sampling presents an event identification algorithm suitable for decentralized computing in resource-constrained networks. In the absence of an event, the "uninteresting" data is not transmitted to the sink. Thus, the energy cost is further reduced. e-Sampling can be useful in a broad range of applications. We apply e-Sampling to Structural Health Monitoring (SHM) and Fire Event Monitoring (FEM), which are typical applications of high-frequency events. Evaluation via both simulations and experiments validates the advantages of e-Sampling in low-cost event monitoring, and in effectively expanding the capacity of WSNs for high data rate applications.
机译:;在许多资源受限的联网系统中,包括无线传感器网络(WSN),采样率自适应是一个关键问题。现有算法主要用于通常由中央单元或接收器适应的,以高,低或固定频率采样来检测诸如对象或物理变化之类的事件,因此需要额外的资源使用。另外,此算法可能使网络无法捕获动态变化或感兴趣的事件,因此影响监视质量。本文研究了有关变化或事件的完全自主自适应采样的问题。通过分两个阶段解决该问题,我们提出了一种新颖的方案,称为“事件敏感型自适应采样和低成本监视(e-Sampling)”,这导致资源使用量减少(例如,能源,无线电带宽)。首先,电子采样为自适应采样提供了嵌入式算法,该算法可在高频和低频间隔之间自动切换以减少资源使用,同时最大程度地减少误报检测。其次,通过分析频率内容,e-Sampling提出了一种事件识别算法,适用于资源受限网络中的分散计算。在没有事件的情况下,“无趣”数据不会传输到接收器。因此,能量成本进一步降低。电子采样可以在广泛的应用中使用。我们将电子采样应用于结构健康监测(SHM)和火灾事件监测(FEM),这是高频事件的典型应用。通过仿真和实验进行的评估,验证了电子采样在低成本事件监视中的优势,并有效地扩展了WSN在高数据速率应用中的容量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号