首页> 外文期刊>ACM transactions on Asian and low-resource language information processing >Graph-based Multimodal Ranking Models for Multimodal Summarization
【24h】

Graph-based Multimodal Ranking Models for Multimodal Summarization

机译:基于图的多式摘要的多峰排名模型

获取原文
获取原文并翻译 | 示例

摘要

Multimodal summarization aims to extract the most important information from the multimedia input. It is becoming increasingly popular due to the rapid growth of multimedia data in recent years. There are various researches focusing on different multimodal summarization tasks. However, the existing methods can only generate single-modal output or multimodal output. In addition, most of them need a lot of annotated samples for training, which makes it difficult to be generalized to other tasks or domains. Motivated by this, we propose a unified framework for multimodal summarization that can cover both single-modal output summarization and multimodal output summarization. In our framework, we consider three different scenarios and propose the respective unsupervised graph-based multimodal summarization models without the requirement of any manually annotated document-summary pairs for training: (1) generic multimodal ranking, (2) modal-dominated multimodal ranking, and (3) non-redundant text-image multimodal ranking. Furthermore, an image-text similarity estimation model is introduced to measure the semantic similarity between image and text. Experiments show that our proposed models outperform the single-modal summarization methods on both automatic and human evaluation metrics. Besides, our models can also improve the single-modal summarization with the guidance of the multimedia information. This study can be applied as the benchmark for further study on multimodal summarization task.
机译:多模式摘要旨在从多媒体输入中提取最重要的信息。由于近年来多媒体数据的快速增长,它越来越受欢迎。各种研究侧重于不同的多模式摘要任务。但是,现有方法只能生成单模输出或多模级输出。此外,他们中的大多数需要许多用于训练的注释样本,这使得难以推广到其他任务或域名。由此开发,我们提出了一个统一的多模式摘要框架,可以涵盖单模输出总结和多峰输出总结。在我们的框架中,我们考虑了三种不同的场景,并提出了基于无监督的基于图形的多模式摘要模型,而无需要求任何手动注释的文档摘要对进行培训:(1)通用多式联运排名,(2)模态主导的多式数级排名, (3)非冗余文本图像多峰排名。此外,引入了图像文本相似性估计模型来测量图像和文本之间的语义相似度。实验表明,我们提出的模型优于自动和人类评估度量的单模摘要方法。此外,我们的模型还可以通过多媒体信息的指导来提高单模摘要。本研究可作为进一步研究多模式摘要任务的基准。

著录项

  • 来源
  • 作者单位

    Univ Chinese Acad Sci Sch Artificial Intelligence Inst Automat Natl Lab Pattern Recognit CAS Beijing Peoples R China|Intelligence Bldg 95 Zhongguancun East Rd Beijing 100190 Peoples R China;

    Univ Chinese Acad Sci Sch Artificial Intelligence Inst Automat Natl Lab Pattern Recognit CAS Beijing Peoples R China|Intelligence Bldg 95 Zhongguancun East Rd Beijing 100190 Peoples R China;

    Univ Chinese Acad Sci Sch Artificial Intelligence Inst Automat Natl Lab Pattern Recognit CAS Beijing Fanyu Techn Beijing Peoples R China|Intelligence Bldg 95 Zhongguancun East Rd Beijing 100190 Peoples R China;

    Univ Chinese Acad Sci Sch Artificial Intelligence Inst Automat Natl Lab Pattern Recognit CAS Beijing Acad Artifi Beijing Peoples R China|Intelligence Bldg 95 Zhongguancun East Rd Beijing 100190 Peoples R China;

    Univ Chinese Acad Sci Sch Artificial Intelligence Inst Automat Natl Lab Pattern Recognit CAS Beijing Peoples R China|Intelligence Bldg 95 Zhongguancun East Rd Beijing 100190 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multimodal summarization; single-modal; multimodal ranking; unsupervised;

    机译:多模式摘要;单模;多式数排名;无监督;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号