首页> 外文期刊>ACM transactions on Asian and low-resource language information processing >Joint Model of Entity Recognition and Relation Extraction with Self-attention Mechanism
【24h】

Joint Model of Entity Recognition and Relation Extraction with Self-attention Mechanism

机译:实体识别与自我关注机制的联合模型及其关系提取

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the joint model of entity recognition (ER) and relation extraction (RE) has attracted more and more attention in the healthcare and medical domains. However, there are some problems with the prior work. The joint model cannot extract all the relations for a specific entity, and the majority of joint models heavily rely on complex artificial features or professional natural language processing (NLP) tools. In this article, we construct a novel joint model that can simultaneously extract all medical entities and relations from medicine Chinese instructions. Moreover, the self-attention mechanism is introduced to the joint model to learn word intra-sentence dependencies. The proposed model is evaluated using a medicine Chinese instruction dataset that we collect and an open dataset provided in CoNLL-2004. Experimental results show that the model with self-attention achieves the state-of-the-art performance.
机译:近年来,实体识别(ER)和关系提取(RE)的联合模型在医疗保健和医学领域中吸引了越来越多的关注。但是,事先工作存在一些问题。联合模型无法提取特定实体的所有关系,以及大多数联合模型严重依赖于复杂的人工特征或专业的自然语言处理(NLP)工具。在本文中,我们构建了一种新的联合模型,可以同时提取来自Medicine汉语指​​示的所有医学实体和关系。此外,将自我注意机制引入联合模型,以学习句子内依赖性。使用我们收集的药物指令数据集和Conll-2004中提供的公开数据集进行评估。实验结果表明,自我关注的模型实现了最先进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号