首页> 外文期刊>ACM transactions on Asian and low-resource language information processing >Extracting Polarity Shifting Patterns from Any Corpus Based on Natural Annotation
【24h】

Extracting Polarity Shifting Patterns from Any Corpus Based on Natural Annotation

机译:基于自然注释从任何语料库中提取极性移位模式

获取原文
获取原文并翻译 | 示例

摘要

In recent years, online sentiment texts are generated by users in various domains and in different languages. Binary polarity classification (positive or negative) on business sentiment texts can help both companies and customers to evaluate products or services. Sometimes, the polarity of sentiment texts can be modified, making the polarity classification difficult. In sentiment analysis, such modification of polarity is termed as polarity shifting, which shifts the polarity of a sentiment clue (emotion, evaluation, etc.). It is well known that detection of polarity shifting can help improve sentiment analysis in texts. However, to detect polarity shifting in corpora is challenging: (1) polarity shifting is normally sparse in texts. making human annotation difficu (2) corpora with dense polarity shifting are few; we may need polarity shifting patterns from various corpora.In this article, an approach is presented to extract polarity shifting patterns from any text corpus. For the first time, we proposed to select texts rich in polarity shifting by the idea of natural annotation, which is used to replace human annotation. With a sequence mining algorithm, the selected texts are used to generate polarity shifting pattern candidates, and then we rank them by C-value before human annotation. The approach is tested on different corpora and different languages. The results show that our approach can capture various types of polarity shifting patterns, and some patterns are unique to specific corpora. Therefore, for better performance, it is reasonable to construct polarity shifting patterns directly from the given corpus.
机译:近年来,在线情绪文本由各个域的用户和不同语言生成。业务情感文本的二进制极性分类(正面或负面)可以帮助公司和客户评估产品或服务。有时,可以修改情绪文本的极性,使极性分类困难。在情感分析中,这种极性的改变被称为极性移位,这使得情绪线索(情绪,评估等)的极性转移。众所周知,极性移位的检测可以有助于改善文本中的情感分析。然而,为了检测语料库中的极性移位是具有挑战性的:(1)极性移位通常在文本中稀疏。使人类注释困难; (2)具有致密极性移位的Corpora很少;我们可能需要来自各种语料的极性移位模式。本文中,提出了一种方法,以从任何文本语料库中提取极性移位模式。我们首次提出通过自然注释的想法选择丰富的极性转换的文本,用于取代人类注释。利用序列挖掘算法,所选文本用于生成极性移位模式候选,然后我们在人类注释前通过C值对它们进行排序。该方法在不同的基层和不同的语言上进行了测试。结果表明,我们的方法可以捕获各种类型的极性移位模式,一些模式对特定的语料库是独一无二的。因此,为了更好的性能,可以合理地从给定的语料库构建极性移位模式。

著录项

  • 来源
  • 作者单位

    Minjiang Univ Coll Comp & Control Engn 200 Xiyuangong Rd Fuzhou 350108 Fujian Peoples R China|Minjiang Univ Fujian Prov Key Lab Informat Proc & Intelligent C 2 Xueyuan Rd Fuzhou 350108 Fujian Peoples R China|Internet Innovat Res Ctr Humanities & Social Sci 200 Xiyuangong Rd Fuzhou 350108 Fujian Peoples R China;

    Minjiang Univ Coll Comp & Control Engn 200 Xiyuangong Rd Fuzhou 350108 Fujian Peoples R China;

    Minjiang Univ Coll Comp & Control Engn 200 Xiyuangong Rd Fuzhou 350108 Fujian Peoples R China;

    Minjiang Univ Coll Comp & Control Engn 200 Xiyuangong Rd Fuzhou 350108 Fujian Peoples R China;

    Minjiang Univ Coll Comp & Control Engn 200 Xiyuangong Rd Fuzhou 350108 Fujian Peoples R China;

    Minjiang Univ Fujian Prov Key Lab Informat Proc & Intelligent C 2 Xueyuan Rd Fuzhou 350108 Fujian Peoples R China|Fuzhou Univ Coll Mathmet & Comp Sci Fuzhou Fujian Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sentiment analysis; natural annotation; polarity shifting; sequence mining; prior polarity;

    机译:情绪分析;自然注释;极性移位;序列挖掘;先前的极性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号