首页> 外文期刊>ACM transactions on Asian language information processing >Evaluating Textual Entailment Recognition for University Entrance Examinations
【24h】

Evaluating Textual Entailment Recognition for University Entrance Examinations

机译:评估大学入学考试的文字蕴涵度

获取原文
获取原文并翻译 | 示例

摘要

The present article addresses an attempt to apply questions in university entrance examinations to the evaluation of textual entailment recognition. Questions in several fields, such as history and politics, primarily test the examinee's knowledge in the form of choosing true statements from multiple choices. Answering such questions can be regarded as equivalent to finding evidential texts from a textbase such as textbooks and Wikipedia. Therefore, this task can be recast as recognizing textual entailment between a description in a textbase and a statement given in a question. We focused on the National Center Test for University Admission in Japan and converted questions into the evaluation data for textual entailment recognition by using Wikipedia as a textbase. Consequently, it is revealed that nearly half of the questions can be mapped into textual entailment recognition; 941 text pairs were created from 404 questions from six subjects. This data set is provided for a subtask of NTCIR RITE (Recognizing Inference in Text), and 16 systems from six teams used the data set for evaluation. The evaluation results revealed that the best system achieved a correct answer ratio of 56%, which is significantly better than a random choice baseline.
机译:本文提出了一种尝试将大学入学考试中的问题应用于评估文字蕴涵度的方法。历史和政治等多个领域的问题主要以从多项选择中选择真实陈述的形式测试考生的知识。回答此类问题可被视为等同于从诸如教科书和Wikipedia之类的文本库中查找证据文本。因此,可以将该任务重新定义为可以识别文本库中的描述与问题中给出的陈述之间的文本含义。我们重点研究了日本的国家大学入学中心考试,并通过使用Wikipedia作为文本库将问题转换为评估数据,以进行文字蕴涵度识别。结果表明,将近一半的问题可以映射到文本蕴涵识别中。从六个主题的404个问题中创建了941个文本对。该数据集是为NTCIR RITE(识别文本中的推理)的子任务提供的,六个团队的16个系统使用该数据集进行评估。评估结果表明,最佳系统的正确答案率为56%,明显优于随机选择基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号